Matches in SemOpenAlex for { <https://semopenalex.org/work/W2089593262> ?p ?o ?g. }
- W2089593262 endingPage "2332" @default.
- W2089593262 startingPage "2318" @default.
- W2089593262 abstract "It is known that in addition to spectrum sparsity, spatial sparsity can also be used to further enhance spectral utilization in cognitive radio systems. To achieve that, secondary users (SUs) must know the locations and signal strength distributions (SSDs) of primary users' base stations (PUBSs). Recently, a group sparse total least squares method was developed to cooperatively sense the PUBSs' signal strength and estimate their locations. It approximates PUBSs' power decay with a path loss model (PLM), assumes PUBSs' locations on some grid points, and then accomplishes the estimation tasks. However, the parameters of the PLM have to be known in advance, and the accuracy of the location estimation is bounded by the resolution of the grid points, which limit its practical applications. In this paper, we propose a sparse Bayesian learning method to solve the problems. We use a Laplacian function to model the power decay of a PUBS and then derive learning rules to estimate corresponding parameters. The distinct features of the proposed method are that most parameters are adaptively estimated, and little prior information is needed. To further enhance the performance, we incorporate source number detection methods in the proposed algorithm such that the number of the PUBSs can be precisely detected, facilitating the estimation of PUBSs' locations and SSDs. Moreover, the proposed algorithm is modified into a recursive mode to adapt to SUs' mobility and time-variant observations. Simulations show that the proposed algorithm has good performance, even when the spatial measurement rate is low." @default.
- W2089593262 created "2016-06-24" @default.
- W2089593262 creator A5000422885 @default.
- W2089593262 creator A5011410163 @default.
- W2089593262 creator A5051872907 @default.
- W2089593262 creator A5084663385 @default.
- W2089593262 date "2015-06-01" @default.
- W2089593262 modified "2023-10-16" @default.
- W2089593262 title "Cooperative Radio Source Positioning and Power Map Reconstruction: A Sparse Bayesian Learning Approach" @default.
- W2089593262 cites W1963694973 @default.
- W2089593262 cites W1969408578 @default.
- W2089593262 cites W1986931325 @default.
- W2089593262 cites W1995551946 @default.
- W2089593262 cites W2003688737 @default.
- W2089593262 cites W2019841176 @default.
- W2089593262 cites W2071284784 @default.
- W2089593262 cites W2097118043 @default.
- W2089593262 cites W2097323375 @default.
- W2089593262 cites W2099969214 @default.
- W2089593262 cites W2101840010 @default.
- W2089593262 cites W2108924122 @default.
- W2089593262 cites W2109357213 @default.
- W2089593262 cites W2109449402 @default.
- W2089593262 cites W2119667497 @default.
- W2089593262 cites W2123641911 @default.
- W2089593262 cites W2123703134 @default.
- W2089593262 cites W2124590431 @default.
- W2089593262 cites W2126643436 @default.
- W2089593262 cites W2129638195 @default.
- W2089593262 cites W2130949726 @default.
- W2089593262 cites W2144010578 @default.
- W2089593262 cites W2144106004 @default.
- W2089593262 cites W2148135143 @default.
- W2089593262 cites W2151565294 @default.
- W2089593262 cites W2151693816 @default.
- W2089593262 cites W2157879939 @default.
- W2089593262 cites W2164452299 @default.
- W2089593262 cites W2168078104 @default.
- W2089593262 cites W2168175751 @default.
- W2089593262 cites W2911546748 @default.
- W2089593262 cites W324837553 @default.
- W2089593262 cites W4250955649 @default.
- W2089593262 doi "https://doi.org/10.1109/tvt.2014.2345738" @default.
- W2089593262 hasPublicationYear "2015" @default.
- W2089593262 type Work @default.
- W2089593262 sameAs 2089593262 @default.
- W2089593262 citedByCount "22" @default.
- W2089593262 countsByYear W20895932622015 @default.
- W2089593262 countsByYear W20895932622016 @default.
- W2089593262 countsByYear W20895932622017 @default.
- W2089593262 countsByYear W20895932622019 @default.
- W2089593262 countsByYear W20895932622020 @default.
- W2089593262 countsByYear W20895932622022 @default.
- W2089593262 countsByYear W20895932622023 @default.
- W2089593262 crossrefType "journal-article" @default.
- W2089593262 hasAuthorship W2089593262A5000422885 @default.
- W2089593262 hasAuthorship W2089593262A5011410163 @default.
- W2089593262 hasAuthorship W2089593262A5051872907 @default.
- W2089593262 hasAuthorship W2089593262A5084663385 @default.
- W2089593262 hasConcept C107673813 @default.
- W2089593262 hasConcept C11413529 @default.
- W2089593262 hasConcept C124851039 @default.
- W2089593262 hasConcept C149946192 @default.
- W2089593262 hasConcept C153180895 @default.
- W2089593262 hasConcept C154945302 @default.
- W2089593262 hasConcept C187691185 @default.
- W2089593262 hasConcept C2524010 @default.
- W2089593262 hasConcept C33923547 @default.
- W2089593262 hasConcept C41008148 @default.
- W2089593262 hasConcept C555944384 @default.
- W2089593262 hasConcept C68649174 @default.
- W2089593262 hasConcept C76155785 @default.
- W2089593262 hasConceptScore W2089593262C107673813 @default.
- W2089593262 hasConceptScore W2089593262C11413529 @default.
- W2089593262 hasConceptScore W2089593262C124851039 @default.
- W2089593262 hasConceptScore W2089593262C149946192 @default.
- W2089593262 hasConceptScore W2089593262C153180895 @default.
- W2089593262 hasConceptScore W2089593262C154945302 @default.
- W2089593262 hasConceptScore W2089593262C187691185 @default.
- W2089593262 hasConceptScore W2089593262C2524010 @default.
- W2089593262 hasConceptScore W2089593262C33923547 @default.
- W2089593262 hasConceptScore W2089593262C41008148 @default.
- W2089593262 hasConceptScore W2089593262C555944384 @default.
- W2089593262 hasConceptScore W2089593262C68649174 @default.
- W2089593262 hasConceptScore W2089593262C76155785 @default.
- W2089593262 hasFunder F4320322795 @default.
- W2089593262 hasIssue "6" @default.
- W2089593262 hasLocation W20895932621 @default.
- W2089593262 hasOpenAccess W2089593262 @default.
- W2089593262 hasPrimaryLocation W20895932621 @default.
- W2089593262 hasRelatedWork W1542882895 @default.
- W2089593262 hasRelatedWork W178275653 @default.
- W2089593262 hasRelatedWork W1995912754 @default.
- W2089593262 hasRelatedWork W1996879405 @default.
- W2089593262 hasRelatedWork W2034870236 @default.
- W2089593262 hasRelatedWork W2106111174 @default.
- W2089593262 hasRelatedWork W2316668687 @default.
- W2089593262 hasRelatedWork W2587780417 @default.