Matches in SemOpenAlex for { <https://semopenalex.org/work/W2089605950> ?p ?o ?g. }
- W2089605950 endingPage "217" @default.
- W2089605950 startingPage "206" @default.
- W2089605950 abstract "Developing a diagnostic and prognostic health management system involves analyzing system parameters monitored during the lifetime of the system. This data analysis may involve multiple steps, including data reduction, feature extraction, clustering and classification, building control charts, identification of anomalies, and modeling and predicting parameter degradation in order to evaluate the state of health for the system under investigation. Evaluating the covariance between the monitored system parameters allows for better understanding of the trends in monitored system data, and therefore it is an integral part of the data analysis. Typically, a sample covariance matrix is used to evaluate the covariance between monitored system parameters. The monitored system data are often sensor data, which are inherently noisy. The noise in sensor data can lead to inaccurate evaluation of the covariance in data using a sample covariance matrix. This paper examines approaches to evaluate covariance, including the minimum volume ellipsoid, the minimum covariance determinant, and the nearest neighbor variance estimation. When the performance of these approaches was evaluated on datasets with increasing percentage of Gaussian noise, it was observed that the nearest neighbor variance estimation exhibited the most stable estimates of covariance. To improve the accuracy of covariance estimates using nearest neighbor-based methodology, a modified approach for the nearest neighbor variance estimation technique is developed in this paper. Case studies based on data analysis steps involved in prognostic solutions are developed in order to compare the performance of the covariance estimation methodologies discussed in the paper." @default.
- W2089605950 created "2016-06-24" @default.
- W2089605950 creator A5011647709 @default.
- W2089605950 creator A5050716572 @default.
- W2089605950 creator A5053909220 @default.
- W2089605950 creator A5069236107 @default.
- W2089605950 date "2015-06-01" @default.
- W2089605950 modified "2023-09-23" @default.
- W2089605950 title "Evaluating covariance in prognostic and system health management applications" @default.
- W2089605950 cites W1964765097 @default.
- W2089605950 cites W1967396805 @default.
- W2089605950 cites W1974528911 @default.
- W2089605950 cites W1989257562 @default.
- W2089605950 cites W1993220529 @default.
- W2089605950 cites W1993640935 @default.
- W2089605950 cites W2004948655 @default.
- W2089605950 cites W2024807576 @default.
- W2089605950 cites W2025026317 @default.
- W2089605950 cites W2025970186 @default.
- W2089605950 cites W2029436479 @default.
- W2089605950 cites W2032536435 @default.
- W2089605950 cites W2036796028 @default.
- W2089605950 cites W2044331283 @default.
- W2089605950 cites W2046608260 @default.
- W2089605950 cites W2050620470 @default.
- W2089605950 cites W2064323378 @default.
- W2089605950 cites W2068302187 @default.
- W2089605950 cites W2077630998 @default.
- W2089605950 cites W2086021758 @default.
- W2089605950 cites W2097794234 @default.
- W2089605950 cites W2098608159 @default.
- W2089605950 cites W2104680778 @default.
- W2089605950 cites W2122660231 @default.
- W2089605950 cites W2124128849 @default.
- W2089605950 cites W2136809053 @default.
- W2089605950 cites W2143585755 @default.
- W2089605950 cites W2144114667 @default.
- W2089605950 cites W2149823865 @default.
- W2089605950 cites W2539201410 @default.
- W2089605950 cites W4243563432 @default.
- W2089605950 cites W4375905898 @default.
- W2089605950 doi "https://doi.org/10.1016/j.ymssp.2014.10.012" @default.
- W2089605950 hasPublicationYear "2015" @default.
- W2089605950 type Work @default.
- W2089605950 sameAs 2089605950 @default.
- W2089605950 citedByCount "6" @default.
- W2089605950 countsByYear W20896059502016 @default.
- W2089605950 countsByYear W20896059502017 @default.
- W2089605950 countsByYear W20896059502018 @default.
- W2089605950 countsByYear W20896059502020 @default.
- W2089605950 crossrefType "journal-article" @default.
- W2089605950 hasAuthorship W2089605950A5011647709 @default.
- W2089605950 hasAuthorship W2089605950A5050716572 @default.
- W2089605950 hasAuthorship W2089605950A5053909220 @default.
- W2089605950 hasAuthorship W2089605950A5069236107 @default.
- W2089605950 hasConcept C105795698 @default.
- W2089605950 hasConcept C11413529 @default.
- W2089605950 hasConcept C115961682 @default.
- W2089605950 hasConcept C118006245 @default.
- W2089605950 hasConcept C124101348 @default.
- W2089605950 hasConcept C137250428 @default.
- W2089605950 hasConcept C148893098 @default.
- W2089605950 hasConcept C153180895 @default.
- W2089605950 hasConcept C154945302 @default.
- W2089605950 hasConcept C178650346 @default.
- W2089605950 hasConcept C180877172 @default.
- W2089605950 hasConcept C185142706 @default.
- W2089605950 hasConcept C33923547 @default.
- W2089605950 hasConcept C41008148 @default.
- W2089605950 hasConcept C73555534 @default.
- W2089605950 hasConcept C83042196 @default.
- W2089605950 hasConcept C99498987 @default.
- W2089605950 hasConceptScore W2089605950C105795698 @default.
- W2089605950 hasConceptScore W2089605950C11413529 @default.
- W2089605950 hasConceptScore W2089605950C115961682 @default.
- W2089605950 hasConceptScore W2089605950C118006245 @default.
- W2089605950 hasConceptScore W2089605950C124101348 @default.
- W2089605950 hasConceptScore W2089605950C137250428 @default.
- W2089605950 hasConceptScore W2089605950C148893098 @default.
- W2089605950 hasConceptScore W2089605950C153180895 @default.
- W2089605950 hasConceptScore W2089605950C154945302 @default.
- W2089605950 hasConceptScore W2089605950C178650346 @default.
- W2089605950 hasConceptScore W2089605950C180877172 @default.
- W2089605950 hasConceptScore W2089605950C185142706 @default.
- W2089605950 hasConceptScore W2089605950C33923547 @default.
- W2089605950 hasConceptScore W2089605950C41008148 @default.
- W2089605950 hasConceptScore W2089605950C73555534 @default.
- W2089605950 hasConceptScore W2089605950C83042196 @default.
- W2089605950 hasConceptScore W2089605950C99498987 @default.
- W2089605950 hasFunder F4320310578 @default.
- W2089605950 hasLocation W20896059501 @default.
- W2089605950 hasOpenAccess W2089605950 @default.
- W2089605950 hasPrimaryLocation W20896059501 @default.
- W2089605950 hasRelatedWork W1987404909 @default.
- W2089605950 hasRelatedWork W2018001152 @default.
- W2089605950 hasRelatedWork W2109377650 @default.
- W2089605950 hasRelatedWork W2126916073 @default.
- W2089605950 hasRelatedWork W2169046449 @default.