Matches in SemOpenAlex for { <https://semopenalex.org/work/W2089619914> ?p ?o ?g. }
- W2089619914 endingPage "222" @default.
- W2089619914 startingPage "205" @default.
- W2089619914 abstract "The financial econometrics literature includes several Multivariate GARCH models where the model parameter matrices depend on a clustering of financial assets. Those classes might be defined a priori or data-driven. When the latter approach is followed, one method for deriving asset groups is given by the use of clustering methods. In this paper, we analyze in detail one of those clustering approaches, the Gaussian mixture GARCH. This method is designed to identify groups based on the conditional variance dynamic parameters. The clustering algorithm, based on a Gaussian mixture model, has been recently proposed and is here generalized with the introduction of a correction for the presence of correlation across assets. Finally, we introduce a benchmark estimator used to assess the performances of simpler and faster estimators. Simulation experiments show evidence of the improvements given by the correction for asset correlation." @default.
- W2089619914 created "2016-06-24" @default.
- W2089619914 creator A5029974589 @default.
- W2089619914 creator A5090689518 @default.
- W2089619914 date "2013-08-01" @default.
- W2089619914 modified "2023-09-25" @default.
- W2089619914 title "Fast clustering of GARCH processes via Gaussian mixture models" @default.
- W2089619914 cites W1904222552 @default.
- W2089619914 cites W1979575715 @default.
- W2089619914 cites W1986788466 @default.
- W2089619914 cites W1999814123 @default.
- W2089619914 cites W1999996900 @default.
- W2089619914 cites W2045289069 @default.
- W2089619914 cites W2061160212 @default.
- W2089619914 cites W2063593194 @default.
- W2089619914 cites W2085578538 @default.
- W2089619914 cites W2097747115 @default.
- W2089619914 cites W2115435858 @default.
- W2089619914 cites W2125536334 @default.
- W2089619914 cites W2162460645 @default.
- W2089619914 cites W3022253700 @default.
- W2089619914 cites W3121543533 @default.
- W2089619914 cites W3121996124 @default.
- W2089619914 cites W3123747330 @default.
- W2089619914 cites W3125564657 @default.
- W2089619914 cites W4253163276 @default.
- W2089619914 doi "https://doi.org/10.1016/j.matcom.2012.09.015" @default.
- W2089619914 hasPublicationYear "2013" @default.
- W2089619914 type Work @default.
- W2089619914 sameAs 2089619914 @default.
- W2089619914 citedByCount "8" @default.
- W2089619914 countsByYear W20896199142013 @default.
- W2089619914 countsByYear W20896199142016 @default.
- W2089619914 countsByYear W20896199142017 @default.
- W2089619914 countsByYear W20896199142018 @default.
- W2089619914 crossrefType "journal-article" @default.
- W2089619914 hasAuthorship W2089619914A5029974589 @default.
- W2089619914 hasAuthorship W2089619914A5090689518 @default.
- W2089619914 hasConcept C105795698 @default.
- W2089619914 hasConcept C11413529 @default.
- W2089619914 hasConcept C121332964 @default.
- W2089619914 hasConcept C121955636 @default.
- W2089619914 hasConcept C124101348 @default.
- W2089619914 hasConcept C13280743 @default.
- W2089619914 hasConcept C149782125 @default.
- W2089619914 hasConcept C161584116 @default.
- W2089619914 hasConcept C162324750 @default.
- W2089619914 hasConcept C163716315 @default.
- W2089619914 hasConcept C185429906 @default.
- W2089619914 hasConcept C185798385 @default.
- W2089619914 hasConcept C196083921 @default.
- W2089619914 hasConcept C205649164 @default.
- W2089619914 hasConcept C21430997 @default.
- W2089619914 hasConcept C23922673 @default.
- W2089619914 hasConcept C2776142675 @default.
- W2089619914 hasConcept C33923547 @default.
- W2089619914 hasConcept C41008148 @default.
- W2089619914 hasConcept C61224824 @default.
- W2089619914 hasConcept C62520636 @default.
- W2089619914 hasConcept C73555534 @default.
- W2089619914 hasConcept C91602232 @default.
- W2089619914 hasConceptScore W2089619914C105795698 @default.
- W2089619914 hasConceptScore W2089619914C11413529 @default.
- W2089619914 hasConceptScore W2089619914C121332964 @default.
- W2089619914 hasConceptScore W2089619914C121955636 @default.
- W2089619914 hasConceptScore W2089619914C124101348 @default.
- W2089619914 hasConceptScore W2089619914C13280743 @default.
- W2089619914 hasConceptScore W2089619914C149782125 @default.
- W2089619914 hasConceptScore W2089619914C161584116 @default.
- W2089619914 hasConceptScore W2089619914C162324750 @default.
- W2089619914 hasConceptScore W2089619914C163716315 @default.
- W2089619914 hasConceptScore W2089619914C185429906 @default.
- W2089619914 hasConceptScore W2089619914C185798385 @default.
- W2089619914 hasConceptScore W2089619914C196083921 @default.
- W2089619914 hasConceptScore W2089619914C205649164 @default.
- W2089619914 hasConceptScore W2089619914C21430997 @default.
- W2089619914 hasConceptScore W2089619914C23922673 @default.
- W2089619914 hasConceptScore W2089619914C2776142675 @default.
- W2089619914 hasConceptScore W2089619914C33923547 @default.
- W2089619914 hasConceptScore W2089619914C41008148 @default.
- W2089619914 hasConceptScore W2089619914C61224824 @default.
- W2089619914 hasConceptScore W2089619914C62520636 @default.
- W2089619914 hasConceptScore W2089619914C73555534 @default.
- W2089619914 hasConceptScore W2089619914C91602232 @default.
- W2089619914 hasLocation W20896199141 @default.
- W2089619914 hasOpenAccess W2089619914 @default.
- W2089619914 hasPrimaryLocation W20896199141 @default.
- W2089619914 hasRelatedWork W1996402891 @default.
- W2089619914 hasRelatedWork W2032044889 @default.
- W2089619914 hasRelatedWork W2125646610 @default.
- W2089619914 hasRelatedWork W2356447422 @default.
- W2089619914 hasRelatedWork W2531172836 @default.
- W2089619914 hasRelatedWork W2943326745 @default.
- W2089619914 hasRelatedWork W3126007505 @default.
- W2089619914 hasRelatedWork W3134380899 @default.
- W2089619914 hasRelatedWork W3175849485 @default.
- W2089619914 hasRelatedWork W4312286080 @default.
- W2089619914 hasVolume "94" @default.