Matches in SemOpenAlex for { <https://semopenalex.org/work/W2089969772> ?p ?o ?g. }
- W2089969772 endingPage "72" @default.
- W2089969772 startingPage "51" @default.
- W2089969772 abstract "The Neoproterozoic Earth was shaped largely by the Grenvillian and Pan-African orogenies. Out of these, the Grenvillian orogeny has long been regarded to be of minor nature in terms of global-scale orogenic episodes, whereas the Pan-African orogeny has been widely recognized in many continental fragments, although not in major parts of Asia. Based on chronological information in zircons from major river mouths across several important terrains of the globe, we show here that the Grenvillian orogeny contributed significantly to the formation of the continental crust. The time period between 0.6 Ga and 0.8 Ga marked the climax at the dawn of the Pan-African orogeny. Continental crust formed in this period is concentrated in the Pan-African orogenic belts widely across the globe. These regions were widespread over the half hemisphere of the globe, and were subsequently reduced in size after they moved to form Laurasia. The normalized frequency distribution of zircon ages from river-mouth sand over the world clearly demonstrates that Neoproterozoic and (0.9–0.6 Ga) and Grenvillian (1.3–1.0 Ga) peaks define the largest population. This means that extensive subduction, and hence active plate tectonics, might have operated through these periods. The zircon study has also brought to light new regions of the Grenvillian orogenic belts, particularly in the continents which are now covered by thick Phanerozoic sedimentary basins. Based on the new locations of Grenvillian orogens identified in this study, and using the distribution patterns as a marker bed, we propose revised paleogeographic configurations of the Rodinia and Gondwana supercontinents. Our results demonstrate that the Neoproterozoic was the most active period of crust formation in the Earth. The cold basins, formed right after the assembly of Rodinia, exhibit a basin chain fringing the northern periphery of Rodinia, which turned into sites of mantle upwellings and led to the rifting and separation of the supercontinental assembly. The continents then moved northwards after the formation of Gondwana at ca. 540 Ma, and enlarged the northern half of the supercontinent Pangea since 250 Ma. Based on the results, we also evaluate the role of supercontinents in the mechanism of generation of superplumes addressing the enigma that the coldest mantle right above the Core–Mantle Boundary turns to the hottest one over a period of several hundreds of million years. Slab graveyard formed by the Pan-African subduction can be imaged through P-wave tomography. We postulate that the high-velocity anomaly in the D” layer underneath Gondwana has now transformed to the low-V regions to generate the African superplume. The tectonic history of solid Earth in the Phanerozoic seems to be controlled by the slab graveyards formed by the Grenvillian orogeny ca. 1.0 Ga." @default.
- W2089969772 created "2016-06-24" @default.
- W2089969772 creator A5013582768 @default.
- W2089969772 creator A5046418211 @default.
- W2089969772 creator A5060053337 @default.
- W2089969772 creator A5071225732 @default.
- W2089969772 creator A5078422205 @default.
- W2089969772 creator A5080317984 @default.
- W2089969772 date "2008-08-01" @default.
- W2089969772 modified "2023-10-16" @default.
- W2089969772 title "The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume" @default.
- W2089969772 cites W1485388173 @default.
- W2089969772 cites W1967125358 @default.
- W2089969772 cites W1972893584 @default.
- W2089969772 cites W1978488084 @default.
- W2089969772 cites W1980642926 @default.
- W2089969772 cites W1986984160 @default.
- W2089969772 cites W1987936521 @default.
- W2089969772 cites W1989799586 @default.
- W2089969772 cites W1997643846 @default.
- W2089969772 cites W1998765219 @default.
- W2089969772 cites W2004075030 @default.
- W2089969772 cites W2004934899 @default.
- W2089969772 cites W2012359517 @default.
- W2089969772 cites W2019007596 @default.
- W2089969772 cites W2023150618 @default.
- W2089969772 cites W2028864600 @default.
- W2089969772 cites W2034109374 @default.
- W2089969772 cites W2036409086 @default.
- W2089969772 cites W2042438372 @default.
- W2089969772 cites W2047578854 @default.
- W2089969772 cites W2049465410 @default.
- W2089969772 cites W2050120676 @default.
- W2089969772 cites W2051623493 @default.
- W2089969772 cites W2058741861 @default.
- W2089969772 cites W2059968799 @default.
- W2089969772 cites W2066123376 @default.
- W2089969772 cites W2078155457 @default.
- W2089969772 cites W2082278050 @default.
- W2089969772 cites W2083326010 @default.
- W2089969772 cites W2086356258 @default.
- W2089969772 cites W2089035678 @default.
- W2089969772 cites W2093607270 @default.
- W2089969772 cites W2104280034 @default.
- W2089969772 cites W2114398259 @default.
- W2089969772 cites W2123588493 @default.
- W2089969772 cites W2123619281 @default.
- W2089969772 cites W2127039475 @default.
- W2089969772 cites W2134519050 @default.
- W2089969772 cites W2135183977 @default.
- W2089969772 cites W2151039219 @default.
- W2089969772 cites W2159604323 @default.
- W2089969772 cites W2170339782 @default.
- W2089969772 cites W2174216460 @default.
- W2089969772 cites W4245770643 @default.
- W2089969772 cites W4251794621 @default.
- W2089969772 doi "https://doi.org/10.1016/j.gr.2008.01.001" @default.
- W2089969772 hasPublicationYear "2008" @default.
- W2089969772 type Work @default.
- W2089969772 sameAs 2089969772 @default.
- W2089969772 citedByCount "374" @default.
- W2089969772 countsByYear W20899697722012 @default.
- W2089969772 countsByYear W20899697722013 @default.
- W2089969772 countsByYear W20899697722014 @default.
- W2089969772 countsByYear W20899697722015 @default.
- W2089969772 countsByYear W20899697722016 @default.
- W2089969772 countsByYear W20899697722017 @default.
- W2089969772 countsByYear W20899697722018 @default.
- W2089969772 countsByYear W20899697722019 @default.
- W2089969772 countsByYear W20899697722020 @default.
- W2089969772 countsByYear W20899697722021 @default.
- W2089969772 countsByYear W20899697722022 @default.
- W2089969772 countsByYear W20899697722023 @default.
- W2089969772 crossrefType "journal-article" @default.
- W2089969772 hasAuthorship W2089969772A5013582768 @default.
- W2089969772 hasAuthorship W2089969772A5046418211 @default.
- W2089969772 hasAuthorship W2089969772A5060053337 @default.
- W2089969772 hasAuthorship W2089969772A5071225732 @default.
- W2089969772 hasAuthorship W2089969772A5078422205 @default.
- W2089969772 hasAuthorship W2089969772A5080317984 @default.
- W2089969772 hasConcept C127313418 @default.
- W2089969772 hasConcept C141646446 @default.
- W2089969772 hasConcept C147717901 @default.
- W2089969772 hasConcept C151730666 @default.
- W2089969772 hasConcept C1965285 @default.
- W2089969772 hasConcept C2776322157 @default.
- W2089969772 hasConcept C2776698055 @default.
- W2089969772 hasConcept C2777241186 @default.
- W2089969772 hasConcept C2779241739 @default.
- W2089969772 hasConcept C2781148125 @default.
- W2089969772 hasConcept C77928131 @default.
- W2089969772 hasConceptScore W2089969772C127313418 @default.
- W2089969772 hasConceptScore W2089969772C141646446 @default.
- W2089969772 hasConceptScore W2089969772C147717901 @default.
- W2089969772 hasConceptScore W2089969772C151730666 @default.
- W2089969772 hasConceptScore W2089969772C1965285 @default.
- W2089969772 hasConceptScore W2089969772C2776322157 @default.
- W2089969772 hasConceptScore W2089969772C2776698055 @default.