Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090107144> ?p ?o ?g. }
- W2090107144 endingPage "548" @default.
- W2090107144 startingPage "533" @default.
- W2090107144 abstract "Artificial neural networks have been shown to be effective as general non-linear models with applications to medical diagnosis, prognosis and survival analysis. This chapter begins with a review of artificial neural networks used as non-linear regression models in the survival analysis of breast cancer patients. These techniques are of much interest because they allow modelling of time-dependent hazards in the presence of complex non-linear and non-additive effects between covariates. First, the role of neural networks is introduced within the context of statistical methods and parametric techniques for prognosis of survival in breast cancer. Second, these methods are applied in a study comprising node-negative breast cancer patients in order to evaluate the evidence for improved models or combination of prognostic indices to be used in a clinical environment. In particular, node-negative breast cancer is an early form of breast cancer in which cancer cells have not yet spread to the regional lymph nodes. There is much interest in determining the relevant prognostic factors that can allocate node-negative patients into prognostic groups correlating with the risk of disease relapse and mortality following surgery. This risk index can then be used to inform the choice of therapy. The Cox regression model and Artificial Neural Networks (ANN), a Partial Logistic Artificial Neural Network with Automatic Relevance Determination (PLANN-ARD) are used in order to identify and interpret the prognostic group allocation. A monthly retrospective cohort study with 5-year follow-up is conducted in pathologically node-negative patients selected from two datasets collected from Manchester Christie Hospital, UK." @default.
- W2090107144 created "2016-06-24" @default.
- W2090107144 creator A5014668287 @default.
- W2090107144 creator A5021388264 @default.
- W2090107144 creator A5072654134 @default.
- W2090107144 creator A5079471659 @default.
- W2090107144 date "1994-09-01" @default.
- W2090107144 modified "2023-09-26" @default.
- W2090107144 title "1 Use of the neural network for hypothesis generation in fetal surveillance" @default.
- W2090107144 cites W1780987361 @default.
- W2090107144 cites W1971129545 @default.
- W2090107144 cites W1972129836 @default.
- W2090107144 cites W1986127480 @default.
- W2090107144 cites W1987844903 @default.
- W2090107144 cites W1995684620 @default.
- W2090107144 cites W2004763430 @default.
- W2090107144 cites W2008560241 @default.
- W2090107144 cites W2010502188 @default.
- W2090107144 cites W2013830434 @default.
- W2090107144 cites W2014799360 @default.
- W2090107144 cites W2021336362 @default.
- W2090107144 cites W2023791284 @default.
- W2090107144 cites W2031931901 @default.
- W2090107144 cites W2035933865 @default.
- W2090107144 cites W2039386823 @default.
- W2090107144 cites W2047557391 @default.
- W2090107144 cites W2050110763 @default.
- W2090107144 cites W2058114213 @default.
- W2090107144 cites W2060104657 @default.
- W2090107144 cites W2068065982 @default.
- W2090107144 cites W2068612306 @default.
- W2090107144 cites W2077987182 @default.
- W2090107144 cites W2080993856 @default.
- W2090107144 cites W2135154956 @default.
- W2090107144 cites W2152575748 @default.
- W2090107144 cites W2421124466 @default.
- W2090107144 doi "https://doi.org/10.1016/s0950-3552(05)80197-x" @default.
- W2090107144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7813127" @default.
- W2090107144 hasPublicationYear "1994" @default.
- W2090107144 type Work @default.
- W2090107144 sameAs 2090107144 @default.
- W2090107144 citedByCount "7" @default.
- W2090107144 countsByYear W20901071442012 @default.
- W2090107144 crossrefType "journal-article" @default.
- W2090107144 hasAuthorship W2090107144A5014668287 @default.
- W2090107144 hasAuthorship W2090107144A5021388264 @default.
- W2090107144 hasAuthorship W2090107144A5072654134 @default.
- W2090107144 hasAuthorship W2090107144A5079471659 @default.
- W2090107144 hasConcept C10515644 @default.
- W2090107144 hasConcept C119857082 @default.
- W2090107144 hasConcept C121608353 @default.
- W2090107144 hasConcept C126322002 @default.
- W2090107144 hasConcept C127413603 @default.
- W2090107144 hasConcept C143998085 @default.
- W2090107144 hasConcept C151730666 @default.
- W2090107144 hasConcept C151956035 @default.
- W2090107144 hasConcept C154945302 @default.
- W2090107144 hasConcept C2779343474 @default.
- W2090107144 hasConcept C41008148 @default.
- W2090107144 hasConcept C50382708 @default.
- W2090107144 hasConcept C50644808 @default.
- W2090107144 hasConcept C530470458 @default.
- W2090107144 hasConcept C62611344 @default.
- W2090107144 hasConcept C66938386 @default.
- W2090107144 hasConcept C71924100 @default.
- W2090107144 hasConcept C86803240 @default.
- W2090107144 hasConceptScore W2090107144C10515644 @default.
- W2090107144 hasConceptScore W2090107144C119857082 @default.
- W2090107144 hasConceptScore W2090107144C121608353 @default.
- W2090107144 hasConceptScore W2090107144C126322002 @default.
- W2090107144 hasConceptScore W2090107144C127413603 @default.
- W2090107144 hasConceptScore W2090107144C143998085 @default.
- W2090107144 hasConceptScore W2090107144C151730666 @default.
- W2090107144 hasConceptScore W2090107144C151956035 @default.
- W2090107144 hasConceptScore W2090107144C154945302 @default.
- W2090107144 hasConceptScore W2090107144C2779343474 @default.
- W2090107144 hasConceptScore W2090107144C41008148 @default.
- W2090107144 hasConceptScore W2090107144C50382708 @default.
- W2090107144 hasConceptScore W2090107144C50644808 @default.
- W2090107144 hasConceptScore W2090107144C530470458 @default.
- W2090107144 hasConceptScore W2090107144C62611344 @default.
- W2090107144 hasConceptScore W2090107144C66938386 @default.
- W2090107144 hasConceptScore W2090107144C71924100 @default.
- W2090107144 hasConceptScore W2090107144C86803240 @default.
- W2090107144 hasIssue "3" @default.
- W2090107144 hasLocation W20901071441 @default.
- W2090107144 hasLocation W20901071442 @default.
- W2090107144 hasOpenAccess W2090107144 @default.
- W2090107144 hasPrimaryLocation W20901071441 @default.
- W2090107144 hasRelatedWork W2169066896 @default.
- W2090107144 hasRelatedWork W2224319365 @default.
- W2090107144 hasRelatedWork W2245189862 @default.
- W2090107144 hasRelatedWork W2996875972 @default.
- W2090107144 hasRelatedWork W3010070186 @default.
- W2090107144 hasRelatedWork W377899687 @default.
- W2090107144 hasRelatedWork W4211071659 @default.
- W2090107144 hasRelatedWork W4223632937 @default.
- W2090107144 hasRelatedWork W4256227745 @default.