Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090182720> ?p ?o ?g. }
- W2090182720 endingPage "395" @default.
- W2090182720 startingPage "377" @default.
- W2090182720 abstract "Time series data contains temporal ordering, which makes its feature selection different from the normal feature selection. Feature selection in multivariate time series has two tasks: identifying the relevant features and finding their effective window sizes of lagged values. The methods extended from normal feature selection methods do not solve this two-dimensional feature selection problem since they do not take lagged observations of features into consideration. In this paper, we present a method using the Granger causality discovery to identify causal features with effective sliding window sizes in multivariate numerical time series. The proposed method considers the influence of lagged observations of features on the target time series. We compare our proposed feature selection method with several normal feature selection methods on multivariate time series data using three well-known modeling methods. Our method outperforms other methods for predicting future values of target time series. In a real world case study on water quality monitoring data, we show that the features selected by our method contain four out of five features used by domain experts, and prediction performance on our features is better than that on features of domain experts using three modeling methods." @default.
- W2090182720 created "2016-06-24" @default.
- W2090182720 creator A5012177739 @default.
- W2090182720 creator A5029442609 @default.
- W2090182720 creator A5047334112 @default.
- W2090182720 creator A5053276253 @default.
- W2090182720 creator A5070695637 @default.
- W2090182720 creator A5090625387 @default.
- W2090182720 date "2014-07-09" @default.
- W2090182720 modified "2023-10-02" @default.
- W2090182720 title "Using causal discovery for feature selection in multivariate numerical time series" @default.
- W2090182720 cites W1567784974 @default.
- W2090182720 cites W1679846099 @default.
- W2090182720 cites W1970092360 @default.
- W2090182720 cites W1970696760 @default.
- W2090182720 cites W1992830012 @default.
- W2090182720 cites W2009271606 @default.
- W2090182720 cites W2017337590 @default.
- W2090182720 cites W2022007094 @default.
- W2090182720 cites W2027913322 @default.
- W2090182720 cites W2033390084 @default.
- W2090182720 cites W2057422141 @default.
- W2090182720 cites W2060064529 @default.
- W2090182720 cites W2066795664 @default.
- W2090182720 cites W2066796814 @default.
- W2090182720 cites W2084868992 @default.
- W2090182720 cites W2090464137 @default.
- W2090182720 cites W2097580026 @default.
- W2090182720 cites W2101591109 @default.
- W2090182720 cites W2110603299 @default.
- W2090182720 cites W2117922789 @default.
- W2090182720 cites W2118418963 @default.
- W2090182720 cites W2125675750 @default.
- W2090182720 cites W2130535167 @default.
- W2090182720 cites W2131209034 @default.
- W2090182720 cites W2131534673 @default.
- W2090182720 cites W2133280087 @default.
- W2090182720 cites W2137348364 @default.
- W2090182720 cites W2142635246 @default.
- W2090182720 cites W2143426320 @default.
- W2090182720 cites W2153635508 @default.
- W2090182720 cites W2162008374 @default.
- W2090182720 cites W2168175751 @default.
- W2090182720 cites W2169171650 @default.
- W2090182720 cites W2178225550 @default.
- W2090182720 cites W3100543032 @default.
- W2090182720 cites W4254407586 @default.
- W2090182720 doi "https://doi.org/10.1007/s10994-014-5460-1" @default.
- W2090182720 hasPublicationYear "2014" @default.
- W2090182720 type Work @default.
- W2090182720 sameAs 2090182720 @default.
- W2090182720 citedByCount "60" @default.
- W2090182720 countsByYear W20901827202017 @default.
- W2090182720 countsByYear W20901827202018 @default.
- W2090182720 countsByYear W20901827202019 @default.
- W2090182720 countsByYear W20901827202020 @default.
- W2090182720 countsByYear W20901827202021 @default.
- W2090182720 countsByYear W20901827202022 @default.
- W2090182720 countsByYear W20901827202023 @default.
- W2090182720 crossrefType "journal-article" @default.
- W2090182720 hasAuthorship W2090182720A5012177739 @default.
- W2090182720 hasAuthorship W2090182720A5029442609 @default.
- W2090182720 hasAuthorship W2090182720A5047334112 @default.
- W2090182720 hasAuthorship W2090182720A5053276253 @default.
- W2090182720 hasAuthorship W2090182720A5070695637 @default.
- W2090182720 hasAuthorship W2090182720A5090625387 @default.
- W2090182720 hasBestOaLocation W20901827201 @default.
- W2090182720 hasConcept C102392041 @default.
- W2090182720 hasConcept C111919701 @default.
- W2090182720 hasConcept C119857082 @default.
- W2090182720 hasConcept C124101348 @default.
- W2090182720 hasConcept C138885662 @default.
- W2090182720 hasConcept C143724316 @default.
- W2090182720 hasConcept C148483581 @default.
- W2090182720 hasConcept C151406439 @default.
- W2090182720 hasConcept C151730666 @default.
- W2090182720 hasConcept C153180895 @default.
- W2090182720 hasConcept C154945302 @default.
- W2090182720 hasConcept C161584116 @default.
- W2090182720 hasConcept C2776401178 @default.
- W2090182720 hasConcept C2778751112 @default.
- W2090182720 hasConcept C41008148 @default.
- W2090182720 hasConcept C41895202 @default.
- W2090182720 hasConcept C81917197 @default.
- W2090182720 hasConcept C86803240 @default.
- W2090182720 hasConceptScore W2090182720C102392041 @default.
- W2090182720 hasConceptScore W2090182720C111919701 @default.
- W2090182720 hasConceptScore W2090182720C119857082 @default.
- W2090182720 hasConceptScore W2090182720C124101348 @default.
- W2090182720 hasConceptScore W2090182720C138885662 @default.
- W2090182720 hasConceptScore W2090182720C143724316 @default.
- W2090182720 hasConceptScore W2090182720C148483581 @default.
- W2090182720 hasConceptScore W2090182720C151406439 @default.
- W2090182720 hasConceptScore W2090182720C151730666 @default.
- W2090182720 hasConceptScore W2090182720C153180895 @default.
- W2090182720 hasConceptScore W2090182720C154945302 @default.
- W2090182720 hasConceptScore W2090182720C161584116 @default.
- W2090182720 hasConceptScore W2090182720C2776401178 @default.