Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090257588> ?p ?o ?g. }
- W2090257588 abstract "[1] This study investigates the impacts of canopy structure specification on modeling net radiation (Rn), latent heat flux (LE) and net photosynthesis (An) by coupling two contrasting radiation transfer models with a two-leaf photosynthesis model for a maturing loblolly pine stand near Durham, North Carolina, USA. The first radiation transfer model is based on a uniform canopy representation (UCR) that assumes leaves are randomly distributed within the canopy, and the second radiation transfer model is based on a gappy canopy representation (GCR) in which leaves are clumped into individual crowns, thereby forming gaps between the crowns. To isolate the effects of canopy structure on model results, we used identical model parameters taken from the literature for both models. Canopy structure has great impact on energy distribution between the canopy and the forest floor. Comparing the model results, UCR produced lower Rn, higher LE and higher An than GCR. UCR intercepted more shortwave radiation inside the canopy, thus producing less radiation absorption on the forest floor and in turn lower Rn. There is a higher degree of nonlinearity between An estimated by UCR and by GCR than for LE. Most of the difference for LE and An between UCR and GCR occurred around noon, when gaps between crowns can be seen from the direction of the incident sunbeam. Comparing with eddy-covariance measurements in the same loblolly pine stand from May to September 2001, based on several measures GCR provided more accurate estimates for Rn, LE and An than UCR. The improvements when using GCR were much clearer when comparing the daytime trend of LE and An for the growing season. Sensitivity analysis showed that UCR produces higher LE and An estimates than GCR for canopy cover ranging from 0.2 to 0.8. There is a high degree of nonlinearity in the relationship between UCR estimates for An and those of GCR, particularly when canopy cover is low, and suggests that simple scaling of UCR parameters cannot compensate for differences between the two models. LE from UCR and GCR is also nonlinearly related when canopy cover is low, but the nonlinearity quickly disappears as canopy cover increases, such that LE from UCR and GCR are linearly related and the relationship becomes stronger as canopy cover increases. These results suggest the uniform canopy assumption can lead to underestimation of Rn, and overestimation of LE and An. Given the potential in mapping regional scale forest canopy structure with high spatial resolution optical and Lidar remote sensing plotforms, it is possible to use GCR for up-scaling ecosystem processes from flux tower measurements to heterogeneous landscapes, provided the heterogeneity is not too extreme to modify the flow dynamics." @default.
- W2090257588 created "2016-06-24" @default.
- W2090257588 creator A5014483785 @default.
- W2090257588 creator A5016731659 @default.
- W2090257588 creator A5017040382 @default.
- W2090257588 creator A5061088675 @default.
- W2090257588 creator A5063640667 @default.
- W2090257588 creator A5070383343 @default.
- W2090257588 creator A5073107314 @default.
- W2090257588 date "2009-12-16" @default.
- W2090257588 modified "2023-10-08" @default.
- W2090257588 title "Energy, water, and carbon fluxes in a loblolly pine stand: Results from uniform and gappy canopy models with comparisons to eddy flux data" @default.
- W2090257588 cites W1209269186 @default.
- W2090257588 cites W1559317553 @default.
- W2090257588 cites W1966442922 @default.
- W2090257588 cites W1981897942 @default.
- W2090257588 cites W1982810981 @default.
- W2090257588 cites W1989473086 @default.
- W2090257588 cites W1999112734 @default.
- W2090257588 cites W2000071889 @default.
- W2090257588 cites W2006563460 @default.
- W2090257588 cites W2008335854 @default.
- W2090257588 cites W2010190272 @default.
- W2090257588 cites W2010784770 @default.
- W2090257588 cites W2016961712 @default.
- W2090257588 cites W2022243809 @default.
- W2090257588 cites W2026616641 @default.
- W2090257588 cites W2029074727 @default.
- W2090257588 cites W2030097343 @default.
- W2090257588 cites W2030216404 @default.
- W2090257588 cites W2031925862 @default.
- W2090257588 cites W2034857520 @default.
- W2090257588 cites W2037392322 @default.
- W2090257588 cites W2046857879 @default.
- W2090257588 cites W2050966212 @default.
- W2090257588 cites W2054335800 @default.
- W2090257588 cites W2055622459 @default.
- W2090257588 cites W2058008034 @default.
- W2090257588 cites W2068195262 @default.
- W2090257588 cites W2069416671 @default.
- W2090257588 cites W2081179181 @default.
- W2090257588 cites W2085275037 @default.
- W2090257588 cites W2086075858 @default.
- W2090257588 cites W2088162350 @default.
- W2090257588 cites W2088292560 @default.
- W2090257588 cites W2089776915 @default.
- W2090257588 cites W2090508053 @default.
- W2090257588 cites W2090958907 @default.
- W2090257588 cites W2096466966 @default.
- W2090257588 cites W2097378121 @default.
- W2090257588 cites W2098979911 @default.
- W2090257588 cites W2100321473 @default.
- W2090257588 cites W2104588681 @default.
- W2090257588 cites W2106708698 @default.
- W2090257588 cites W2108920038 @default.
- W2090257588 cites W2119929874 @default.
- W2090257588 cites W21230015 @default.
- W2090257588 cites W2124507928 @default.
- W2090257588 cites W2125453422 @default.
- W2090257588 cites W2125491431 @default.
- W2090257588 cites W2126860661 @default.
- W2090257588 cites W2127458053 @default.
- W2090257588 cites W2132926714 @default.
- W2090257588 cites W2138569385 @default.
- W2090257588 cites W2139250825 @default.
- W2090257588 cites W2140622444 @default.
- W2090257588 cites W2142729451 @default.
- W2090257588 cites W2144355766 @default.
- W2090257588 cites W2146403625 @default.
- W2090257588 cites W2147760191 @default.
- W2090257588 cites W2148163865 @default.
- W2090257588 cites W2149792166 @default.
- W2090257588 cites W2156964984 @default.
- W2090257588 cites W2161189075 @default.
- W2090257588 cites W2167891208 @default.
- W2090257588 cites W2167959229 @default.
- W2090257588 cites W2168945034 @default.
- W2090257588 cites W2171366295 @default.
- W2090257588 cites W2183882374 @default.
- W2090257588 cites W2273297058 @default.
- W2090257588 cites W2315130334 @default.
- W2090257588 cites W2324913510 @default.
- W2090257588 cites W2338049369 @default.
- W2090257588 cites W4238458260 @default.
- W2090257588 cites W4241819545 @default.
- W2090257588 cites W4256096524 @default.
- W2090257588 cites W4298466131 @default.
- W2090257588 cites W43139042 @default.
- W2090257588 doi "https://doi.org/10.1029/2009jg000951" @default.
- W2090257588 hasPublicationYear "2009" @default.
- W2090257588 type Work @default.
- W2090257588 sameAs 2090257588 @default.
- W2090257588 citedByCount "23" @default.
- W2090257588 countsByYear W20902575882012 @default.
- W2090257588 countsByYear W20902575882013 @default.
- W2090257588 countsByYear W20902575882014 @default.
- W2090257588 countsByYear W20902575882015 @default.
- W2090257588 countsByYear W20902575882016 @default.
- W2090257588 countsByYear W20902575882017 @default.
- W2090257588 countsByYear W20902575882020 @default.