Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090288698> ?p ?o ?g. }
- W2090288698 endingPage "939" @default.
- W2090288698 startingPage "927" @default.
- W2090288698 abstract "Descriptor selection in QSAR typically relies on a set of upfront working hypotheses in order to boil down the initial descriptor set to a tractable size. Stepwise regression, computationally cheap and therefore widely used in spite of its potential caveats, is most aggressive in reducing the effectively explored problem space by adopting a greedy variable pick strategy. This work explores an antipodal approach, incarnated by an original Genetic Algorithm (GA)-based Stochastic QSAR Sampler (SQS) that favors unbiased model search over computational cost. Independent of a priori descriptor filtering and, most important, not limited to linear models only, it was benchmarked against the ISIDA Stepwise Regression (SR) tool. SQS was run under various premises, varying the training/validation set splitting scheme, the nonlinearity policy, and the used descriptors. With the considered three anti-HIV compound sets, repeated SQS runs generate sometimes poorly overlapping but nevertheless equally well validating model sets. Enabling SQS to apply nonlinear descriptor transformations increases the problem space: nevertheless, nonlinear models tend to be more robust validators. Model validation benchmarking showed SQS to match the performance of SR or outperform it in cases when the upfront simplifications of SR “backfire”, even though the robust SR got trapped in local minima only once in six cases. Consensus models from large SQS model sets validate wellbut not outstandingly better than SR consensus equations. SQS is thus a robust QSAR building tool according to standard validation tests against external sets of compounds (of same families as used for training), but many of its benefits/drawbacks may yet not be revealed by such tests. SQS results are a challenge to the traditional way to interpret and exploit QSAR: how to deal with thousands of well validating models, nonetheless providing potentially diverging applicability ranges and predicted values for external compounds. SR does not impose such burden on the user, but is “betting” on a single equation or a narrow consensus model to behave properly in virtual screening a sound strategy? By posing these questions, this article will hopefully act as an incentive for the long-haul studies needed to get them answered." @default.
- W2090288698 created "2016-06-24" @default.
- W2090288698 creator A5008233127 @default.
- W2090288698 creator A5009782971 @default.
- W2090288698 creator A5031667486 @default.
- W2090288698 creator A5038467371 @default.
- W2090288698 creator A5070041767 @default.
- W2090288698 date "2007-05-01" @default.
- W2090288698 modified "2023-10-10" @default.
- W2090288698 title "Stochastic versus Stepwise Strategies for Quantitative Structure−Activity Relationship GenerationHow Much Effort May the Mining for Successful QSAR Models Take?" @default.
- W2090288698 cites W1954754471 @default.
- W2090288698 cites W1972746127 @default.
- W2090288698 cites W1978239142 @default.
- W2090288698 cites W1981651311 @default.
- W2090288698 cites W2001623468 @default.
- W2090288698 cites W2006360003 @default.
- W2090288698 cites W2015928143 @default.
- W2090288698 cites W2019274391 @default.
- W2090288698 cites W2023130417 @default.
- W2090288698 cites W2039340637 @default.
- W2090288698 cites W2052644203 @default.
- W2090288698 cites W2059713851 @default.
- W2090288698 cites W2061697874 @default.
- W2090288698 cites W2078841894 @default.
- W2090288698 cites W2084237693 @default.
- W2090288698 cites W2088372218 @default.
- W2090288698 cites W2092348839 @default.
- W2090288698 cites W2165314300 @default.
- W2090288698 cites W2207094495 @default.
- W2090288698 cites W2950919680 @default.
- W2090288698 cites W2951073242 @default.
- W2090288698 cites W4236886332 @default.
- W2090288698 cites W4255535729 @default.
- W2090288698 doi "https://doi.org/10.1021/ci600476r" @default.
- W2090288698 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17480052" @default.
- W2090288698 hasPublicationYear "2007" @default.
- W2090288698 type Work @default.
- W2090288698 sameAs 2090288698 @default.
- W2090288698 citedByCount "33" @default.
- W2090288698 countsByYear W20902886982012 @default.
- W2090288698 countsByYear W20902886982013 @default.
- W2090288698 countsByYear W20902886982014 @default.
- W2090288698 countsByYear W20902886982016 @default.
- W2090288698 countsByYear W20902886982017 @default.
- W2090288698 countsByYear W20902886982020 @default.
- W2090288698 crossrefType "journal-article" @default.
- W2090288698 hasAuthorship W2090288698A5008233127 @default.
- W2090288698 hasAuthorship W2090288698A5009782971 @default.
- W2090288698 hasAuthorship W2090288698A5031667486 @default.
- W2090288698 hasAuthorship W2090288698A5038467371 @default.
- W2090288698 hasAuthorship W2090288698A5070041767 @default.
- W2090288698 hasConcept C111472728 @default.
- W2090288698 hasConcept C119857082 @default.
- W2090288698 hasConcept C121332964 @default.
- W2090288698 hasConcept C124101348 @default.
- W2090288698 hasConcept C126255220 @default.
- W2090288698 hasConcept C138885662 @default.
- W2090288698 hasConcept C154945302 @default.
- W2090288698 hasConcept C158622935 @default.
- W2090288698 hasConcept C163175372 @default.
- W2090288698 hasConcept C164126121 @default.
- W2090288698 hasConcept C177264268 @default.
- W2090288698 hasConcept C199360897 @default.
- W2090288698 hasConcept C22019652 @default.
- W2090288698 hasConcept C33923547 @default.
- W2090288698 hasConcept C41008148 @default.
- W2090288698 hasConcept C50644808 @default.
- W2090288698 hasConcept C62520636 @default.
- W2090288698 hasConcept C75553542 @default.
- W2090288698 hasConceptScore W2090288698C111472728 @default.
- W2090288698 hasConceptScore W2090288698C119857082 @default.
- W2090288698 hasConceptScore W2090288698C121332964 @default.
- W2090288698 hasConceptScore W2090288698C124101348 @default.
- W2090288698 hasConceptScore W2090288698C126255220 @default.
- W2090288698 hasConceptScore W2090288698C138885662 @default.
- W2090288698 hasConceptScore W2090288698C154945302 @default.
- W2090288698 hasConceptScore W2090288698C158622935 @default.
- W2090288698 hasConceptScore W2090288698C163175372 @default.
- W2090288698 hasConceptScore W2090288698C164126121 @default.
- W2090288698 hasConceptScore W2090288698C177264268 @default.
- W2090288698 hasConceptScore W2090288698C199360897 @default.
- W2090288698 hasConceptScore W2090288698C22019652 @default.
- W2090288698 hasConceptScore W2090288698C33923547 @default.
- W2090288698 hasConceptScore W2090288698C41008148 @default.
- W2090288698 hasConceptScore W2090288698C50644808 @default.
- W2090288698 hasConceptScore W2090288698C62520636 @default.
- W2090288698 hasConceptScore W2090288698C75553542 @default.
- W2090288698 hasIssue "3" @default.
- W2090288698 hasLocation W20902886981 @default.
- W2090288698 hasLocation W20902886982 @default.
- W2090288698 hasLocation W20902886983 @default.
- W2090288698 hasLocation W20902886984 @default.
- W2090288698 hasLocation W20902886985 @default.
- W2090288698 hasLocation W20902886986 @default.
- W2090288698 hasOpenAccess W2090288698 @default.
- W2090288698 hasPrimaryLocation W20902886981 @default.
- W2090288698 hasRelatedWork W1574414179 @default.
- W2090288698 hasRelatedWork W2089462264 @default.