Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090424610> ?p ?o ?g. }
- W2090424610 endingPage "2392" @default.
- W2090424610 startingPage "2381" @default.
- W2090424610 abstract "Hyperspectral data classification is a hot topic in remote sensing community. In recent years, significant effort has been focused on this issue. However, most of the methods extract the features of original data in a shallow manner. In this paper, we introduce a deep learning approach into hyperspectral image classification. A new feature extraction (FE) and image classification framework are proposed for hyperspectral data analysis based on deep belief network (DBN). First, we verify the eligibility of restricted Boltzmann machine (RBM) and DBN by the following spectral information-based classification. Then, we propose a novel deep architecture, which combines the spectral-spatial FE and classification together to get high classification accuracy. The framework is a hybrid of principal component analysis (PCA), hierarchical learning-based FE, and logistic regression (LR). Experimental results with hyperspectral data indicate that the classifier provide competitive solution with the state-of-the-art methods. In addition, this paper reveals that deep learning system has huge potential for hyperspectral data classification." @default.
- W2090424610 created "2016-06-24" @default.
- W2090424610 creator A5024631382 @default.
- W2090424610 creator A5027034650 @default.
- W2090424610 creator A5032263180 @default.
- W2090424610 date "2015-06-01" @default.
- W2090424610 modified "2023-10-09" @default.
- W2090424610 title "Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network" @default.
- W2090424610 cites W1948819007 @default.
- W2090424610 cites W1971891445 @default.
- W2090424610 cites W1990914742 @default.
- W2090424610 cites W1994197834 @default.
- W2090424610 cites W2014506068 @default.
- W2090424610 cites W2016860790 @default.
- W2090424610 cites W2019377328 @default.
- W2090424610 cites W2029766222 @default.
- W2090424610 cites W2033272835 @default.
- W2090424610 cites W2036195817 @default.
- W2090424610 cites W2039708501 @default.
- W2090424610 cites W2043665634 @default.
- W2090424610 cites W2044439250 @default.
- W2090424610 cites W2069231830 @default.
- W2090424610 cites W2076961568 @default.
- W2090424610 cites W2079539078 @default.
- W2090424610 cites W2087263574 @default.
- W2090424610 cites W2093210928 @default.
- W2090424610 cites W2100495367 @default.
- W2090424610 cites W2101926813 @default.
- W2090424610 cites W2104269704 @default.
- W2090424610 cites W2109395398 @default.
- W2090424610 cites W2111838090 @default.
- W2090424610 cites W2114819256 @default.
- W2090424610 cites W2116064496 @default.
- W2090424610 cites W2117741752 @default.
- W2090424610 cites W2121338139 @default.
- W2090424610 cites W2124706543 @default.
- W2090424610 cites W2127070009 @default.
- W2090424610 cites W2130313186 @default.
- W2090424610 cites W2133114417 @default.
- W2090424610 cites W2134663338 @default.
- W2090424610 cites W2136251662 @default.
- W2090424610 cites W2136516428 @default.
- W2090424610 cites W2136922672 @default.
- W2090424610 cites W2140702875 @default.
- W2090424610 cites W2140991832 @default.
- W2090424610 cites W2144348684 @default.
- W2090424610 cites W2150990614 @default.
- W2090424610 cites W2153635508 @default.
- W2090424610 cites W2159807629 @default.
- W2090424610 cites W2161943337 @default.
- W2090424610 cites W2163922914 @default.
- W2090424610 cites W2229291734 @default.
- W2090424610 cites W4300952079 @default.
- W2090424610 doi "https://doi.org/10.1109/jstars.2015.2388577" @default.
- W2090424610 hasPublicationYear "2015" @default.
- W2090424610 type Work @default.
- W2090424610 sameAs 2090424610 @default.
- W2090424610 citedByCount "917" @default.
- W2090424610 countsByYear W20904246102015 @default.
- W2090424610 countsByYear W20904246102016 @default.
- W2090424610 countsByYear W20904246102017 @default.
- W2090424610 countsByYear W20904246102018 @default.
- W2090424610 countsByYear W20904246102019 @default.
- W2090424610 countsByYear W20904246102020 @default.
- W2090424610 countsByYear W20904246102021 @default.
- W2090424610 countsByYear W20904246102022 @default.
- W2090424610 countsByYear W20904246102023 @default.
- W2090424610 crossrefType "journal-article" @default.
- W2090424610 hasAuthorship W2090424610A5024631382 @default.
- W2090424610 hasAuthorship W2090424610A5027034650 @default.
- W2090424610 hasAuthorship W2090424610A5032263180 @default.
- W2090424610 hasConcept C108583219 @default.
- W2090424610 hasConcept C115961682 @default.
- W2090424610 hasConcept C119857082 @default.
- W2090424610 hasConcept C127313418 @default.
- W2090424610 hasConcept C153180895 @default.
- W2090424610 hasConcept C154945302 @default.
- W2090424610 hasConcept C159078339 @default.
- W2090424610 hasConcept C159620131 @default.
- W2090424610 hasConcept C192576344 @default.
- W2090424610 hasConcept C199354608 @default.
- W2090424610 hasConcept C27438332 @default.
- W2090424610 hasConcept C41008148 @default.
- W2090424610 hasConcept C52622490 @default.
- W2090424610 hasConcept C62649853 @default.
- W2090424610 hasConcept C75294576 @default.
- W2090424610 hasConcept C95623464 @default.
- W2090424610 hasConcept C97385483 @default.
- W2090424610 hasConceptScore W2090424610C108583219 @default.
- W2090424610 hasConceptScore W2090424610C115961682 @default.
- W2090424610 hasConceptScore W2090424610C119857082 @default.
- W2090424610 hasConceptScore W2090424610C127313418 @default.
- W2090424610 hasConceptScore W2090424610C153180895 @default.
- W2090424610 hasConceptScore W2090424610C154945302 @default.
- W2090424610 hasConceptScore W2090424610C159078339 @default.
- W2090424610 hasConceptScore W2090424610C159620131 @default.
- W2090424610 hasConceptScore W2090424610C192576344 @default.
- W2090424610 hasConceptScore W2090424610C199354608 @default.