Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090424742> ?p ?o ?g. }
- W2090424742 endingPage "173" @default.
- W2090424742 startingPage "161" @default.
- W2090424742 abstract "A predictive method, based on quantitative structure-activity relationship (QSAR) techniques, has been developed for liquid viscosities of organic compounds. On the basis of the set of data including viscosity and other 18 physicochemical properties of 116 organic compounds of diverse structure over a viscosity range of 0.197–19.9 mPa·s, two basic models using both multiple linear regression and partial least squares regression have been developed and their prediction abilities compared. The results recommend the traditional multiple linear regression model. The basic model has been developed further to cover about 230 compounds. Required parameters for the predictive model can be readily available or calculated purely from structural information. The prediction result is critically compared with four existing approaches in versatility and reliability. This approach can be used for the reasonably accurate prediction of liquid viscosities for a wide variety of organic compounds based on chemical structure." @default.
- W2090424742 created "2016-06-24" @default.
- W2090424742 creator A5002595884 @default.
- W2090424742 creator A5023698098 @default.
- W2090424742 creator A5079235308 @default.
- W2090424742 date "1996-02-01" @default.
- W2090424742 modified "2023-09-29" @default.
- W2090424742 title "Computer-assisted approach to develop a new prediction method of liquid viscosity of organic compounds" @default.
- W2090424742 cites W1970703608 @default.
- W2090424742 cites W1980672222 @default.
- W2090424742 cites W1982377686 @default.
- W2090424742 cites W1983819655 @default.
- W2090424742 cites W1993249313 @default.
- W2090424742 cites W2006537372 @default.
- W2090424742 cites W2015331488 @default.
- W2090424742 cites W2035465829 @default.
- W2090424742 cites W2037617579 @default.
- W2090424742 cites W2037885639 @default.
- W2090424742 cites W2045624268 @default.
- W2090424742 cites W2046890812 @default.
- W2090424742 cites W2047112187 @default.
- W2090424742 cites W2048066150 @default.
- W2090424742 cites W2056139823 @default.
- W2090424742 cites W2057517889 @default.
- W2090424742 cites W2061970113 @default.
- W2090424742 cites W2080295896 @default.
- W2090424742 cites W2088791192 @default.
- W2090424742 cites W2089837164 @default.
- W2090424742 cites W2097165650 @default.
- W2090424742 cites W2131372637 @default.
- W2090424742 cites W2318394060 @default.
- W2090424742 cites W2573506330 @default.
- W2090424742 cites W2770469415 @default.
- W2090424742 cites W332527116 @default.
- W2090424742 cites W4230813169 @default.
- W2090424742 cites W4361865001 @default.
- W2090424742 cites W2087749857 @default.
- W2090424742 doi "https://doi.org/10.1016/0098-1354(94)00012-d" @default.
- W2090424742 hasPublicationYear "1996" @default.
- W2090424742 type Work @default.
- W2090424742 sameAs 2090424742 @default.
- W2090424742 citedByCount "32" @default.
- W2090424742 countsByYear W20904247422012 @default.
- W2090424742 countsByYear W20904247422013 @default.
- W2090424742 countsByYear W20904247422015 @default.
- W2090424742 countsByYear W20904247422017 @default.
- W2090424742 countsByYear W20904247422018 @default.
- W2090424742 countsByYear W20904247422020 @default.
- W2090424742 countsByYear W20904247422021 @default.
- W2090424742 countsByYear W20904247422023 @default.
- W2090424742 crossrefType "journal-article" @default.
- W2090424742 hasAuthorship W2090424742A5002595884 @default.
- W2090424742 hasAuthorship W2090424742A5023698098 @default.
- W2090424742 hasAuthorship W2090424742A5079235308 @default.
- W2090424742 hasConcept C105795698 @default.
- W2090424742 hasConcept C119857082 @default.
- W2090424742 hasConcept C121332964 @default.
- W2090424742 hasConcept C127172972 @default.
- W2090424742 hasConcept C152877465 @default.
- W2090424742 hasConcept C159985019 @default.
- W2090424742 hasConcept C163258240 @default.
- W2090424742 hasConcept C164126121 @default.
- W2090424742 hasConcept C177264268 @default.
- W2090424742 hasConcept C185592680 @default.
- W2090424742 hasConcept C186060115 @default.
- W2090424742 hasConcept C192562407 @default.
- W2090424742 hasConcept C199360897 @default.
- W2090424742 hasConcept C204323151 @default.
- W2090424742 hasConcept C22354355 @default.
- W2090424742 hasConcept C33923547 @default.
- W2090424742 hasConcept C41008148 @default.
- W2090424742 hasConcept C43214815 @default.
- W2090424742 hasConcept C45804977 @default.
- W2090424742 hasConcept C48921125 @default.
- W2090424742 hasConcept C55037315 @default.
- W2090424742 hasConcept C83546350 @default.
- W2090424742 hasConcept C86803240 @default.
- W2090424742 hasConcept C97355855 @default.
- W2090424742 hasConceptScore W2090424742C105795698 @default.
- W2090424742 hasConceptScore W2090424742C119857082 @default.
- W2090424742 hasConceptScore W2090424742C121332964 @default.
- W2090424742 hasConceptScore W2090424742C127172972 @default.
- W2090424742 hasConceptScore W2090424742C152877465 @default.
- W2090424742 hasConceptScore W2090424742C159985019 @default.
- W2090424742 hasConceptScore W2090424742C163258240 @default.
- W2090424742 hasConceptScore W2090424742C164126121 @default.
- W2090424742 hasConceptScore W2090424742C177264268 @default.
- W2090424742 hasConceptScore W2090424742C185592680 @default.
- W2090424742 hasConceptScore W2090424742C186060115 @default.
- W2090424742 hasConceptScore W2090424742C192562407 @default.
- W2090424742 hasConceptScore W2090424742C199360897 @default.
- W2090424742 hasConceptScore W2090424742C204323151 @default.
- W2090424742 hasConceptScore W2090424742C22354355 @default.
- W2090424742 hasConceptScore W2090424742C33923547 @default.
- W2090424742 hasConceptScore W2090424742C41008148 @default.
- W2090424742 hasConceptScore W2090424742C43214815 @default.
- W2090424742 hasConceptScore W2090424742C45804977 @default.
- W2090424742 hasConceptScore W2090424742C48921125 @default.