Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090430715> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2090430715 endingPage "356" @default.
- W2090430715 startingPage "337" @default.
- W2090430715 abstract "The dynamic stiffness method is extended to large amplitude free and forced vibrations of frames. When the steady state vibration is concerned, the time variable is replaced by the frequency parameter in the Fourier series sense and the governing partial differential equations are replaced by a set of ordinary differential equations in the spatial variables alone. The frequency-dependent shape functons are generated approximately for the spatial discretization. These shape functions are the exact solutions of a beam element subjected to mono-frequency excitation and constant axial force to minimize the spatial discretization errors. The system of ordinary differential equations is replaced by a system of non-linear algebraic equations with the Fourier coefficients of the nodal displacements as unknowns. The Fourier nodal coefficients are solved by the Newtonian algorithm in an incremental manner. When an approximate solution is available, an improved solution is obtained by solving a system of linear equations with the Fourier nodal increments as unknowns. The method is very suitable for parametric studies. When the excitation frequency is taken as a parameter, the free vibration response of various resonances can be obtained without actually computing the linear natural modes. For regular points along the response curves, the accuracy of the gradient matrix (Jacobian or tangential stiffness matrix) is secondary (cf. the modified Newtonian method). However, at the critical positions such as the turning points at resonances and the branching points at bifurcations, the gradient matrix becomes important. The minimum number of harmonic terms required is governed by the conditions of completeness and balanceability for predicting physically realistic response curves. The evaluations of the newly introduced mixed geometric matrices and their derivatives are given explicitly for the computation of the gradient matrix." @default.
- W2090430715 created "2016-06-24" @default.
- W2090430715 creator A5056482307 @default.
- W2090430715 creator A5067826712 @default.
- W2090430715 date "1990-02-01" @default.
- W2090430715 modified "2023-10-05" @default.
- W2090430715 title "Non-linear vibration of frames by the incremental dynamic stiffness method" @default.
- W2090430715 cites W1969496921 @default.
- W2090430715 cites W1985355643 @default.
- W2090430715 cites W1995087403 @default.
- W2090430715 cites W2006664270 @default.
- W2090430715 cites W2008544671 @default.
- W2090430715 cites W2023249413 @default.
- W2090430715 cites W2062279847 @default.
- W2090430715 cites W2064903617 @default.
- W2090430715 cites W2077994544 @default.
- W2090430715 cites W2092842097 @default.
- W2090430715 cites W2104110656 @default.
- W2090430715 cites W2123580041 @default.
- W2090430715 cites W2171274344 @default.
- W2090430715 cites W4242003482 @default.
- W2090430715 doi "https://doi.org/10.1002/nme.1620290209" @default.
- W2090430715 hasPublicationYear "1990" @default.
- W2090430715 type Work @default.
- W2090430715 sameAs 2090430715 @default.
- W2090430715 citedByCount "7" @default.
- W2090430715 countsByYear W20904307152016 @default.
- W2090430715 countsByYear W20904307152017 @default.
- W2090430715 crossrefType "journal-article" @default.
- W2090430715 hasAuthorship W2090430715A5056482307 @default.
- W2090430715 hasAuthorship W2090430715A5067826712 @default.
- W2090430715 hasConcept C102519508 @default.
- W2090430715 hasConcept C121332964 @default.
- W2090430715 hasConcept C134306372 @default.
- W2090430715 hasConcept C135628077 @default.
- W2090430715 hasConcept C14198674 @default.
- W2090430715 hasConcept C158622935 @default.
- W2090430715 hasConcept C198394728 @default.
- W2090430715 hasConcept C207864730 @default.
- W2090430715 hasConcept C33923547 @default.
- W2090430715 hasConcept C51544822 @default.
- W2090430715 hasConcept C62520636 @default.
- W2090430715 hasConcept C73000952 @default.
- W2090430715 hasConcept C78045399 @default.
- W2090430715 hasConcept C97355855 @default.
- W2090430715 hasConceptScore W2090430715C102519508 @default.
- W2090430715 hasConceptScore W2090430715C121332964 @default.
- W2090430715 hasConceptScore W2090430715C134306372 @default.
- W2090430715 hasConceptScore W2090430715C135628077 @default.
- W2090430715 hasConceptScore W2090430715C14198674 @default.
- W2090430715 hasConceptScore W2090430715C158622935 @default.
- W2090430715 hasConceptScore W2090430715C198394728 @default.
- W2090430715 hasConceptScore W2090430715C207864730 @default.
- W2090430715 hasConceptScore W2090430715C33923547 @default.
- W2090430715 hasConceptScore W2090430715C51544822 @default.
- W2090430715 hasConceptScore W2090430715C62520636 @default.
- W2090430715 hasConceptScore W2090430715C73000952 @default.
- W2090430715 hasConceptScore W2090430715C78045399 @default.
- W2090430715 hasConceptScore W2090430715C97355855 @default.
- W2090430715 hasIssue "2" @default.
- W2090430715 hasLocation W20904307151 @default.
- W2090430715 hasOpenAccess W2090430715 @default.
- W2090430715 hasPrimaryLocation W20904307151 @default.
- W2090430715 hasRelatedWork W2011739205 @default.
- W2090430715 hasRelatedWork W2066872858 @default.
- W2090430715 hasRelatedWork W2165559438 @default.
- W2090430715 hasRelatedWork W3015266405 @default.
- W2090430715 hasRelatedWork W3157737782 @default.
- W2090430715 hasRelatedWork W3215378903 @default.
- W2090430715 hasRelatedWork W4213415911 @default.
- W2090430715 hasRelatedWork W4300635433 @default.
- W2090430715 hasRelatedWork W4312337410 @default.
- W2090430715 hasRelatedWork W4323309137 @default.
- W2090430715 hasVolume "29" @default.
- W2090430715 isParatext "false" @default.
- W2090430715 isRetracted "false" @default.
- W2090430715 magId "2090430715" @default.
- W2090430715 workType "article" @default.