Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090552151> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2090552151 endingPage "1121" @default.
- W2090552151 startingPage "1117" @default.
- W2090552151 abstract "No AccessTechnical NoteLow-Weight Fixed Ceramic Capacitor Impedance Matching System for an Electrothermal Plasma MicrothrusterC. Charles, R. W. Boswell and A. BishC. CharlesSpace Plasma, Power and Propulsion Laboratory, Australian National University, Acton, Australian Capital Territory 0200, Australia*Professor and Head, Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Mills Road; .Search for more papers by this author, R. W. BoswellSpace Plasma, Power and Propulsion Laboratory, Australian National University, Acton, Australian Capital Territory 0200, Australia†Professor, Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Mills Road; .Search for more papers by this author and A. BishSpace Plasma, Power and Propulsion Laboratory, Australian National University, Acton, Australian Capital Territory 0200, Australia‡Departmental Fellow, Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, Mills Road; .Search for more papers by this authorPublished Online:1 Jul 2014https://doi.org/10.2514/1.B35119SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Kong M. G., Kroesen G., Morfill G., Nosenko T., Shimizu T. T., van Dijk J. and Zimmermann J. L., “Plasma Medicine: An Introductory Review,” New Journal of Physics, Vol. 11, Nov. 2009, Paper 115012. doi:https://doi.org/10.1088/1367-2630/11/11/115012 NJOPFM 1367-2630 CrossrefGoogle Scholar[2] Park G. Y., Park S. J., Choi M. Y., Koo I. G., Byun J. H., Hong J. W., Sim J. Y., Collins G. J. and Lee J. K., “Atmospheric-Pressure Plasma Sources for Biomedical Applications,” Plasma Sources Science and Technology, Vol. 21, No. 4, 2012, Paper 043001. doi:https://doi.org/10.1088/0963-0252/21/4/043001 PSTEEU 1361-6595 CrossrefGoogle Scholar[3] Waskoenig J., Niemi K., Knake N., Graham L. M., Reuter S., von der Gathen V. S. and Gans T., “Atomic Oxygen Formation in a Radio-Frequency Driven Micro-Atmospheric Pressure Plasma Jet,” Plasma Sources Science and Technology, Vol. 19, No. 4, 2010, Paper 045018. doi:https://doi.org/10.1088/0963-0252/19/4/045018 PSTEEU 1361-6595 CrossrefGoogle Scholar[4] Dixon S., Charles C., Boswell R., Cox W., Holland J. and Gottscho R., “Interactions Between Arrayed Hollow Cathodes,” Journal of Physics D: Applied Physics, Vol. 46, No. 14, 2013, Paper 145204. JPAPBE 0022-3727 CrossrefGoogle Scholar[5] Charles C. and Boswell R., “Measurement and Modelling of a Radiofrequency Micro-Thruster,” Plasma Sources Science and Technology, Vol. 21, No. 2, 2012, Paper 022002. doi:https://doi.org/10.1088/0963-0252/21/2/022002 PSTEEU 1361-6595 CrossrefGoogle Scholar[6] Longmier B. W. and et al., “VX-200 Magnetoplasma Thruster Performance Results Exceeding Fifty-Percent Thruster Efficiency,” Journal of Propulsion and Power, Vol. 27, No. 4, 2011, pp. 915–920. doi:https://doi.org/10.2514/1.B34085 JPPOEL 0748-4658 LinkGoogle Scholar[7] Dunaevsky A., Raitses Y. and Fish N. J., “Plasma Acceleration from Radio-Frequency Discharge in Dielectric Capillary,” Applied Physics Letters, Vol. 88, No. 25, 2006, Paper 251502. doi:https://doi.org/10.1063/1.2214127 APPLAB 0003-6951 CrossrefGoogle Scholar[8] Goebel D. M. and Katz I., Fundamentals of Electric Propulsion, Wiley, Hoboken, NJ, 2008, pp. 148–158. CrossrefGoogle Scholar[9] Leiter H. J., Loch H. W. and Schartner K. H., “RIT15S and RIT15LP—The Development of High Performance Mission Optimized Ion Thrusters,” 35th Joint Propulsion Conference, AIAA Paper 1999-2444, June 1999. LinkGoogle Scholar[10] Boswell R., Charles C., Alexander P., Dedrick J. and Takahashi K., “Plasma Expansion from a Radio Frequency Microdischarge,” IEEE Transactions on Plasma Science, Vol. 39, No. 11, 2011, pp. 2512–2513. doi:https://doi.org/10.1109/TPS.2011.2143434 ITPSBD 0093-3813 CrossrefGoogle Scholar[11] Charles C., Boswell R. W. and Takahashi K., Plasma Physics and Controlled Fusion, “Investigation of Radiofrequency Plasma Sources for Space Travel,” Vol. 54, No. 12, 2012, Paper 124021. doi:https://doi.org/10.1088/0741-3335/54/12/124021 PPCFET 0741-3335 CrossrefGoogle Scholar[12] Fruchtman A., “Energizing and Depletion of Neutrals by a Collisional Plasma,” Plasma Sources Science and Technology, Vol. 17, No. 2, 2008, Paper 024016. PSTEEU 1361-6595 Google Scholar[13] Blackhall L. and Khachan J., “A Simple Electric Thruster Based on Ion Charge Exchange,” Journal of Physics D: Applied Physics, Vol. 40, No. 8, 2007, pp. 2491–2494. doi:https://doi.org/10.1088/0022-3727/40/8/011 JPAPBE 0022-3727 CrossrefGoogle Scholar[14] Greig A., Charles C., Hawkins R. and Boswell R., “Direct Measurement of Neutral Gas Heating in a Radio-Frequency Electrothermal Plasma Micro-Thruster,” Applied Physics Letters, Vol. 103, No. 7, 2013, Paper 074101. doi:https://doi.org/10.1063/1.4818657 APPLAB 0003-6951 CrossrefGoogle Scholar[15] Shabshelowitz A. and Gallimore A. D., “Performance and Probe Measurements of a Radio-Frequency Plasma Thruster,” Journal of Propulsion and Power, Vol. 29, No. 4, 2013, pp. 919–929. doi:https://doi.org/10.2514/1.B34720 JPPOEL 0748-4658 LinkGoogle Scholar[16] West M., Charles C. and Boswell R. W., “Operating Radio Frequency Antennas Immersed in Vacuum: Implications for Ground-Testing Plasma Thrusters,” Journal of Propulsion and Power, Vol. 26, No. 4, 2010, pp. 892–896. doi:https://doi.org/10.2514/1.49384 JPPOEL 0748-4658 LinkGoogle Scholar[17] Williams L. T. and Walker M. L. R., “Thrust Measurements of a Radio Frequency Plasma Source,” Journal of Propulsion and Power, Vol. 29, No. 3, 2013, pp. 520–527. doi:https://doi.org/10.2514/1.B34574 JPPOEL 0748-4658 LinkGoogle Scholar[18] Charles C., Boswell R. W. and Bish A., “Variable Frequency Matching to a Radiofrequency Source Immersed in Vacuum,” Journal of Physics D: Applied Physics, Vol. 46, No. 36, 2013, Paper 365203. doi:https://doi.org/10.1088/0022-3727/46/36/365203 JPAPBE 0022-3727 CrossrefGoogle Scholar[19] Charles C. and Boswell R. W., “Effect of Wall Charging on an Oxygen Plasma Created in a Helicon Diffusion Reactor Used for Silica Deposition,” Journal of Vacuum Science and Technology A, Vol. 13, No. 4, 1995, pp. 2067–2073. doi:https://doi.org/10.1116/1.579522 JVTAD6 0734-2101 CrossrefGoogle Scholar[20] Charles C., Dedrick J., Boswell R. W., O’Connell D. and Gans T., “Nanosecond Optical Imaging Spectroscopy of an Electrothermal Radiofrequency Plasma Thruster Plume,” Applied Physics Letters, Vol. 103, No. 12, 2013, Paper 124103. doi:https://doi.org/10.1063/1.4821738 APPLAB 0003-6951 CrossrefGoogle Scholar[21] Lieberman, M. A. and Lichtenberg A. J., Principles of Plasma Discharges and Materials Processing, Wiley-Interscience, New York, 1994, pp. 71–73, Chapter 3. Google Scholar[22] Degeling A., Mikhelson N., Boswell R. and Sadeghi N., “Characterization of Helicon Waves in a Magnetized Inductive Discharge,” Physics of Plasmas, Vol. 5, No. 3, 1998, pp. 572–579. doi:https://doi.org/10.1063/1.872749 PHPAEN 1070-664X CrossrefGoogle Scholar Previous article" @default.
- W2090552151 created "2016-06-24" @default.
- W2090552151 creator A5040194314 @default.
- W2090552151 creator A5073249367 @default.
- W2090552151 creator A5091791651 @default.
- W2090552151 date "2014-07-01" @default.
- W2090552151 modified "2023-10-06" @default.
- W2090552151 title "Low-Weight Fixed Ceramic Capacitor Impedance Matching System for an Electrothermal Plasma Microthruster" @default.
- W2090552151 cites W1964209223 @default.
- W2090552151 cites W1967647530 @default.
- W2090552151 cites W1975560133 @default.
- W2090552151 cites W1981774005 @default.
- W2090552151 cites W2002933425 @default.
- W2090552151 cites W2017214888 @default.
- W2090552151 cites W2024937341 @default.
- W2090552151 cites W2030098350 @default.
- W2090552151 cites W2031632216 @default.
- W2090552151 cites W2037473311 @default.
- W2090552151 cites W2045843877 @default.
- W2090552151 cites W2055635711 @default.
- W2090552151 cites W2060694534 @default.
- W2090552151 cites W2092594715 @default.
- W2090552151 cites W2138285190 @default.
- W2090552151 cites W2145724318 @default.
- W2090552151 cites W2167347711 @default.
- W2090552151 cites W2333287249 @default.
- W2090552151 cites W429626240 @default.
- W2090552151 cites W2072936690 @default.
- W2090552151 doi "https://doi.org/10.2514/1.b35119" @default.
- W2090552151 hasPublicationYear "2014" @default.
- W2090552151 type Work @default.
- W2090552151 sameAs 2090552151 @default.
- W2090552151 citedByCount "17" @default.
- W2090552151 countsByYear W20905521512015 @default.
- W2090552151 countsByYear W20905521512016 @default.
- W2090552151 countsByYear W20905521512017 @default.
- W2090552151 countsByYear W20905521512018 @default.
- W2090552151 countsByYear W20905521512019 @default.
- W2090552151 countsByYear W20905521512020 @default.
- W2090552151 countsByYear W20905521512023 @default.
- W2090552151 crossrefType "journal-article" @default.
- W2090552151 hasAuthorship W2090552151A5040194314 @default.
- W2090552151 hasAuthorship W2090552151A5073249367 @default.
- W2090552151 hasAuthorship W2090552151A5091791651 @default.
- W2090552151 hasConcept C1034443 @default.
- W2090552151 hasConcept C121332964 @default.
- W2090552151 hasConcept C127413603 @default.
- W2090552151 hasConcept C135736735 @default.
- W2090552151 hasConcept C146978453 @default.
- W2090552151 hasConcept C163368183 @default.
- W2090552151 hasConcept C165850701 @default.
- W2090552151 hasConcept C185544564 @default.
- W2090552151 hasConcept C61696701 @default.
- W2090552151 hasConcept C8058405 @default.
- W2090552151 hasConcept C82706917 @default.
- W2090552151 hasConceptScore W2090552151C1034443 @default.
- W2090552151 hasConceptScore W2090552151C121332964 @default.
- W2090552151 hasConceptScore W2090552151C127413603 @default.
- W2090552151 hasConceptScore W2090552151C135736735 @default.
- W2090552151 hasConceptScore W2090552151C146978453 @default.
- W2090552151 hasConceptScore W2090552151C163368183 @default.
- W2090552151 hasConceptScore W2090552151C165850701 @default.
- W2090552151 hasConceptScore W2090552151C185544564 @default.
- W2090552151 hasConceptScore W2090552151C61696701 @default.
- W2090552151 hasConceptScore W2090552151C8058405 @default.
- W2090552151 hasConceptScore W2090552151C82706917 @default.
- W2090552151 hasIssue "4" @default.
- W2090552151 hasLocation W20905521511 @default.
- W2090552151 hasOpenAccess W2090552151 @default.
- W2090552151 hasPrimaryLocation W20905521511 @default.
- W2090552151 hasRelatedWork W12004825 @default.
- W2090552151 hasRelatedWork W1675868923 @default.
- W2090552151 hasRelatedWork W1797990122 @default.
- W2090552151 hasRelatedWork W1998997323 @default.
- W2090552151 hasRelatedWork W2023110521 @default.
- W2090552151 hasRelatedWork W2052096368 @default.
- W2090552151 hasRelatedWork W2998562287 @default.
- W2090552151 hasRelatedWork W3011026360 @default.
- W2090552151 hasRelatedWork W4283276473 @default.
- W2090552151 hasRelatedWork W2285282148 @default.
- W2090552151 hasVolume "30" @default.
- W2090552151 isParatext "false" @default.
- W2090552151 isRetracted "false" @default.
- W2090552151 magId "2090552151" @default.
- W2090552151 workType "article" @default.