Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090557416> ?p ?o ?g. }
- W2090557416 endingPage "10" @default.
- W2090557416 startingPage "1" @default.
- W2090557416 abstract "The study of reliable automatic systems for protein classification is important for several domains, including finding novel drugs and vaccines. The last decade has seen a number of advances in the development of reliable systems for classifying proteins. Of particular interest has been the exploration of new methods for extracting features from a protein that enhance classification for a given problem. Most methods developed to date, however, have been evaluated in only one or two application areas. Methods have not been explored that generalize well across a number of application areas and datasets. The aim of this study is to find a general method, or an ensemble of methods, that works well on different protein classification datasets and problems. Towards this end, we evaluate several feature extraction approaches for representing proteins starting from their amino acid sequence as well as different feature descriptor combinations using an ensemble of classifiers (support vector machines). In our experiments, more than ten different protein descriptors are compared using nine different datasets. We develop our system using a blind testing protocol, where the parameters of the system are optimized using one dataset and then validated using the other datasets (and so on for each dataset). Although different stand-alone classifiers work well on some datasets and not on others, we have discovered that fusion among different methods obtains a good performance across all the tested datasets, especially when using the weighted sum rule. Included in our feature descriptor combinations is the introduction of two new descriptors, one based on wavelets and the other based on amino acid groups. Using our system, both outperform their standard implementations. We also consider as a baseline the simple amino acid composition (AC) and dipeptide composition (2G), since they have been widely used for protein classification. Our proposed method outperforms AC and 2G." @default.
- W2090557416 created "2016-06-24" @default.
- W2090557416 creator A5007729428 @default.
- W2090557416 creator A5062639338 @default.
- W2090557416 creator A5062894420 @default.
- W2090557416 date "2010-09-01" @default.
- W2090557416 modified "2023-09-29" @default.
- W2090557416 title "High performance set of PseAAC and sequence based descriptors for protein classification" @default.
- W2090557416 cites W149741886 @default.
- W2090557416 cites W1757307512 @default.
- W2090557416 cites W1966991202 @default.
- W2090557416 cites W1976133477 @default.
- W2090557416 cites W1977927254 @default.
- W2090557416 cites W1978736122 @default.
- W2090557416 cites W1980256262 @default.
- W2090557416 cites W1980827173 @default.
- W2090557416 cites W1981091069 @default.
- W2090557416 cites W1982276763 @default.
- W2090557416 cites W1986161806 @default.
- W2090557416 cites W1992991025 @default.
- W2090557416 cites W1997996819 @default.
- W2090557416 cites W1999766624 @default.
- W2090557416 cites W2002292756 @default.
- W2090557416 cites W2003613304 @default.
- W2090557416 cites W2014915963 @default.
- W2090557416 cites W2015572278 @default.
- W2090557416 cites W2020969907 @default.
- W2090557416 cites W2024648909 @default.
- W2090557416 cites W2025577942 @default.
- W2090557416 cites W2028635543 @default.
- W2090557416 cites W2029580264 @default.
- W2090557416 cites W2036154117 @default.
- W2090557416 cites W2036956828 @default.
- W2090557416 cites W2046691535 @default.
- W2090557416 cites W2053979203 @default.
- W2090557416 cites W2066363861 @default.
- W2090557416 cites W2068922715 @default.
- W2090557416 cites W2080915318 @default.
- W2090557416 cites W2085500641 @default.
- W2090557416 cites W2087548537 @default.
- W2090557416 cites W2097892623 @default.
- W2090557416 cites W2098105438 @default.
- W2090557416 cites W2098875971 @default.
- W2090557416 cites W2103496373 @default.
- W2090557416 cites W2106141559 @default.
- W2090557416 cites W2106386982 @default.
- W2090557416 cites W2113242816 @default.
- W2090557416 cites W2116089841 @default.
- W2090557416 cites W2117403572 @default.
- W2090557416 cites W2119497560 @default.
- W2090557416 cites W2120026469 @default.
- W2090557416 cites W2122181892 @default.
- W2090557416 cites W2137920018 @default.
- W2090557416 cites W2138441594 @default.
- W2090557416 cites W2145957695 @default.
- W2090557416 cites W2150452800 @default.
- W2090557416 cites W2150757437 @default.
- W2090557416 cites W2151945801 @default.
- W2090557416 cites W2152210972 @default.
- W2090557416 cites W2156192813 @default.
- W2090557416 cites W2158275940 @default.
- W2090557416 cites W2163818823 @default.
- W2090557416 cites W2163884975 @default.
- W2090557416 cites W2170003281 @default.
- W2090557416 cites W2170960297 @default.
- W2090557416 cites W2980468885 @default.
- W2090557416 cites W4213149192 @default.
- W2090557416 doi "https://doi.org/10.1016/j.jtbi.2010.06.006" @default.
- W2090557416 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20558184" @default.
- W2090557416 hasPublicationYear "2010" @default.
- W2090557416 type Work @default.
- W2090557416 sameAs 2090557416 @default.
- W2090557416 citedByCount "57" @default.
- W2090557416 countsByYear W20905574162012 @default.
- W2090557416 countsByYear W20905574162013 @default.
- W2090557416 countsByYear W20905574162014 @default.
- W2090557416 countsByYear W20905574162015 @default.
- W2090557416 countsByYear W20905574162016 @default.
- W2090557416 countsByYear W20905574162017 @default.
- W2090557416 countsByYear W20905574162018 @default.
- W2090557416 countsByYear W20905574162019 @default.
- W2090557416 countsByYear W20905574162020 @default.
- W2090557416 countsByYear W20905574162021 @default.
- W2090557416 countsByYear W20905574162022 @default.
- W2090557416 countsByYear W20905574162023 @default.
- W2090557416 crossrefType "journal-article" @default.
- W2090557416 hasAuthorship W2090557416A5007729428 @default.
- W2090557416 hasAuthorship W2090557416A5062639338 @default.
- W2090557416 hasAuthorship W2090557416A5062894420 @default.
- W2090557416 hasConcept C106135958 @default.
- W2090557416 hasConcept C119857082 @default.
- W2090557416 hasConcept C12267149 @default.
- W2090557416 hasConcept C124101348 @default.
- W2090557416 hasConcept C138885662 @default.
- W2090557416 hasConcept C153180895 @default.
- W2090557416 hasConcept C154945302 @default.
- W2090557416 hasConcept C177264268 @default.
- W2090557416 hasConcept C199360897 @default.