Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090585013> ?p ?o ?g. }
- W2090585013 endingPage "20138" @default.
- W2090585013 startingPage "20131" @default.
- W2090585013 abstract "The early growth response-1 (EGR-1) protein is an anti-proliferative signal for certain tumor cells and is required for apoptosis induced by stimuli that elevate intracellular Ca2+. We present evidence that EGR-1 transactivates the promoter of the p53 gene and up-regulates p53 RNA and protein levels. Inhibition of p53 function with dominant-negative p53 mutants abrogates EGR-1-dependent apoptosis. These findings establish a direct functional link between EGR-1 and the p53-mediated cell death pathway and suggest that mutant forms of p53 in tumor cells may provide resistance to the anti-proliferative effects of EGR-1. The early growth response-1 (EGR-1) protein is an anti-proliferative signal for certain tumor cells and is required for apoptosis induced by stimuli that elevate intracellular Ca2+. We present evidence that EGR-1 transactivates the promoter of the p53 gene and up-regulates p53 RNA and protein levels. Inhibition of p53 function with dominant-negative p53 mutants abrogates EGR-1-dependent apoptosis. These findings establish a direct functional link between EGR-1 and the p53-mediated cell death pathway and suggest that mutant forms of p53 in tumor cells may provide resistance to the anti-proliferative effects of EGR-1. Apoptosis, or programmed cell death, a genetic process of coordinated deletion of selective cells, is essential for metazoan development and homeostasis (1Wyllie A.H. Cancer Metastasis Rev. 1992; 11: 95-103Crossref PubMed Scopus (575) Google Scholar, 2Reed J.C. J. Cell Biol. 1994; 124: 1-6Crossref PubMed Scopus (2384) Google Scholar, 3Steller H. Science. 1995; 267: 1445-1449Crossref PubMed Scopus (2419) Google Scholar, 4Korsmeyer S.J. Trends Genet. 1995; 11: 101-105Abstract Full Text PDF PubMed Scopus (614) Google Scholar). The primordial forms of apoptosis in Caenorhabditis elegans and Drosophila have been recapitulated in mammalian cells, and striking similarities have been observed in the cell death programs of invertebrates and vertebrates (5Vaux D.L. Haecker G. Strasser A. Cell. 1994; 76: 777-779Abstract Full Text PDF PubMed Scopus (688) Google Scholar, 6White K. Tahaoglu E. Steller H. Science. 1996; 271: 805-807Crossref PubMed Scopus (335) Google Scholar, 7Yuan J. Shaham S. Ledoux S. Ellis H.M. Horvitz H.R. Cell. 1993; 75: 641-652Abstract Full Text PDF PubMed Scopus (2229) Google Scholar). Apoptosis is characterized by cell membrane blebbing, chromatin condensation, changes in nuclear architecture, and oligonucleosome-length DNA fragmentation (8Williams G.T. Cell. 1991; 65: 1097-1098Abstract Full Text PDF PubMed Scopus (831) Google Scholar, 9Wyllie A.H. Kerr J.F.R. Currie A.R. Int. Rev. Cytol. 1980; 68: 251-306Crossref PubMed Scopus (6683) Google Scholar). The apoptotic pathways consist of an early component that includes molecular events that are specific for an inducer or a group of inducers and of downstream effector components that are common to diverse apoptotic signals (10Chinnaiyan A.M. Dixit V.M. Curr. Biol. 1996; 6: 555-562Abstract Full Text Full Text PDF PubMed Google Scholar). The common components include a basal cell death machinery composed of initiator, amplifier, and effector proteases belonging to the interleukin-1 converting enzyme subfamily or an interleukin-1 converting enzyme-related family (10Chinnaiyan A.M. Dixit V.M. Curr. Biol. 1996; 6: 555-562Abstract Full Text Full Text PDF PubMed Google Scholar, 11Enari M. Hug H. Nagata S. Nature. 1995; 375: 78-81Crossref PubMed Scopus (797) Google Scholar, 12Fraser A. Evan G. Cell. 1996; 85: 781-784Abstract Full Text Full Text PDF PubMed Scopus (608) Google Scholar, 13Kumar S. Trends Biochem. Sci. 1995; 20: 198-202Abstract Full Text PDF PubMed Scopus (366) Google Scholar, 14Lazebnik Y.A. Kaufmann S.H. Desnoyers S. Poirier G.G. Earnshaw W.C. Nature. 1994; 371: 346-347Crossref PubMed Scopus (2328) Google Scholar). Downstream targets of these proteases include the interleukin-1 converting enzyme subfamily proteases themselves; the nuclear enzymes poly(ADP-ribose) polymerase and DNA-dependent protein kinase, which are involved in DNA repair; the nuclear protein U1 ribonucleoprotein and nuclear lamins; and cytoplasmic components such as protein kinase Cδ and cytoskeleton components such as actin (cited in Ref. 12Fraser A. Evan G. Cell. 1996; 85: 781-784Abstract Full Text Full Text PDF PubMed Scopus (608) Google Scholar). Intracellular calcium is a key second messenger implicated in the activation of the apoptotic program in diverse cell types and tissues (15Connor J. Sawzchuk I.S. Benson M.C. Tomashefsky P. O'Toole K.M. Olsson C.A. Buttyan R. Prostate. 1988; 13: 119-130Crossref PubMed Scopus (124) Google Scholar, 16Hasbold J. Klaus G.G.B. Eur. J. Immunol. 1990; 20: 1685-1690Crossref PubMed Scopus (230) Google Scholar, 17Furuya Y. Lundmo P. Short A.D. Gill D.L. Isaacs J.T. Cancer Res. 1994; 54: 6167-6175PubMed Google Scholar, 18Nicotera P. Zhivotovsky B. Orrenius S. Cell Calcium. 1994; 16: 279-288Crossref PubMed Scopus (172) Google Scholar). Intracellular calcium levels become elevated after the activation of T lymphocytes by anti-CD3 or that of B lymphocytes by anti-IgM antibodies; after withdrawal of survival factors, such as testosterone in the prostate gland; or after exposure to certain exogenous stimuli, such as calcium ionophores or thapsigargin (TG), 1The abbreviations used are: TG, thapsigargin; EGR-1, early growth response-1; EBS, EGR-1-binding site(s); kb, kilobase pair(s); CAT, chloramphenicol acetyltransferase; TUNEL, terminal transferase-mediated dUTP-nucleotide-end labeling; mEGR-1, mouse EGR-1. 1The abbreviations used are: TG, thapsigargin; EGR-1, early growth response-1; EBS, EGR-1-binding site(s); kb, kilobase pair(s); CAT, chloramphenicol acetyltransferase; TUNEL, terminal transferase-mediated dUTP-nucleotide-end labeling; mEGR-1, mouse EGR-1. a potent inhibitor of the Ca2+-dependent ATPase in the endoplasmic reticulum (19Thastrup O. Cullen P.J. Drobak B.K. Hanley M.R. Dawson A.P. Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 2466-2470Crossref PubMed Scopus (2978) Google Scholar). Elevation of intracellular calcium causes induction of immediate-early genes that further trigger a cascade of downstream events leading ultimately to cell death. Although several immediate-early genes such as early growth response-1 (Egr-1; also referred to as zif268, NGF-IA, TIS8, and Krox-24), nur77, and par-4 have been functionally linked to apoptosis caused by intracellular calcium elevation (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar, 21Sells S.F. Wood Jr., D.P. Joshi-Barve S.S Muthukkumar S. Jacob R.J. Crist S.A. Humphreys S. Rangnekar V.M. Cell Growth & Differ. 1994; 5: 457-466PubMed Google Scholar, 22Liu Z.-G. Smith S.W. McLaughlin K.A. Schwartz L.M. Osborne B.A. Nature. 1994; 367: 281-284Crossref PubMed Scopus (494) Google Scholar, 23Woronicz J.D. Calnan B. Ngo V. Winoto A. Nature. 1994; 367: 277-281Crossref PubMed Scopus (504) Google Scholar, 24Sells S.F. Han S.-S. Muthukkumar S. Maddiwar N. Johnstone R. Boghaert E. Gillis D. Liu G. Nair P. Monning S. Collini P. Mattson M.P. Sukhatme V.P. Zimmer S. Wood Jr., D.P. McRoberts J.W. Shi Y. Rangnekar V.M. Mol. Cell. Biol. 1997; 17: 3823-3832Crossref PubMed Scopus (179) Google Scholar), the precise downstream events that are important for successful apoptosis via this pathway have not been delineated. Egr-1 was first identified as an immediate-early gene induced by mitogenic stimulation and during membrane depolarization and seizure (25Sukhatme V.P. Cao X. Chang L.C. Tsai-Morris C.-H. Stemenkovich D. Ferreira P.C.P. Cohen R. Edwards S.A. Shows T.B. Curran T. Le Beau M.M. Adamson E.D. Cell. 1988; 53: 37-43Abstract Full Text PDF PubMed Scopus (1016) Google Scholar, 26Milbrandt J. Science. 1988; 238: 797-799Crossref Scopus (929) Google Scholar). Subsequently, EGR-1 was shown to be induced by diverse exogenous stimuli (27Gashler A. Sukhatme V.P. Prog. Nucleic Acid Res. 1995; 50: 191-224Crossref PubMed Scopus (551) Google Scholar). EGR-1 is a nuclear protein that contains three zinc finger motifs of the C2H2subtype that bind to a GC-rich consensus DNA sequence TGCG(T/g)(G/A)GG(C/a/t)G(G/T) (where lowercase letters indicate bases of relatively lower binding affinity) or to a (TCC) n motif (28Wang Z.-Y. Qiu Q.-Q. Enger K.T. Deuel T.F. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 8896-8900Crossref PubMed Scopus (145) Google Scholar,29Swirnoff A.H. Milbrandt J. Mol. Cell. Biol. 1995; 15: 2275-2287Crossref PubMed Scopus (298) Google Scholar). Structure-function mapping studies suggest that the NH2 terminus of EGR-1 confers transactivation function to the protein (27Gashler A. Sukhatme V.P. Prog. Nucleic Acid Res. 1995; 50: 191-224Crossref PubMed Scopus (551) Google Scholar, 30Russo M.W. Matheny C. Milbrandt J. Mol. Cell. Biol. 1993; 13: 6858-6865Crossref PubMed Scopus (87) Google Scholar). The Egr-1 gene was localized to human chromosome 5q31.1, a region known to be often deleted from patients suffering from therapy-induced acute myeloid leukemia (31Le Beau M.M. Espinosa III, R. Neuman W.L. Stock W. Roulston D. Larson R.A. Keinanen M. Westbrook C.A. Proc. Natl. Acad. Sci. U. S. A. 1992; 90: 5484-5488Crossref Scopus (232) Google Scholar). Moreover, studies using diverse tumor cells suggest that endogenous levels of EGR-1 act to impede proliferation (32Huang R.-P. Darland T. Okamura D. Mercola D. Adamson E.D. Oncogene. 1994; 9: 1367-1377PubMed Google Scholar, 33Huang R.-P. Liu C. Fan Y. Mercola D. Adamson E.D. Cancer Res. 1995; 55: 5054-5062PubMed Google Scholar). Consistent with an anti-tumor role for EGR-1, apoptosis-inducing stimuli, such as TG and ionizing radiation, up-regulate EGR-1 expression (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar, 34Ahmed M.M. Venkatasubbarao K. Fruitwala S.M. Muthukkumar S. Wood Jr., D.P. Sells S.F. Mohiuddin M. Rangnekar V.M. J. Biol. Chem. 1996; 271: 29231-29237Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar). Furthermore, our previous studies, which used antisense oligomers to block EGR-1 expression or a dominant-negative EGR-1 mutant to inhibit EGR-1 function, confirmed that EGR-1 is essential for apoptosis induced by TG or by ionizing radiation (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar, 34Ahmed M.M. Venkatasubbarao K. Fruitwala S.M. Muthukkumar S. Wood Jr., D.P. Sells S.F. Mohiuddin M. Rangnekar V.M. J. Biol. Chem. 1996; 271: 29231-29237Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar). Because EGR-1 is induced very early in the apoptotic process (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar, 34Ahmed M.M. Venkatasubbarao K. Fruitwala S.M. Muthukkumar S. Wood Jr., D.P. Sells S.F. Mohiuddin M. Rangnekar V.M. J. Biol. Chem. 1996; 271: 29231-29237Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar), it is expected to mediate the activation of downstream genes that play crucial roles in growth control. EGR-1-binding sites (EBS) that conform to the GC-rich consensus sequence have been identified in the promoters of genes such as thymidine kinase, an enzyme integral to DNA biosynthesis; cell cycle regulators such as cyclin D1 and the retinoblastoma susceptibility gene Rb; and (TCC) n motifs have been identified in the promoter regions of genes encoding growth factors such as platelet-derived growth factor and basic fibroblast growth factor; growth factor receptors such as epidermal growth factor-receptor and the insulin-like growth factor-receptor; and protooncogenes c-Ki-ras and c-myc (cited in Refs.20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar and 27Gashler A. Sukhatme V.P. Prog. Nucleic Acid Res. 1995; 50: 191-224Crossref PubMed Scopus (551) Google Scholar). However, none of these genes has been shown to be directly involved in apoptosis as a consequence of EGR-1 induction. The tumor suppressor gene p53 is a central mediator of cell cycle growth arrest and apoptosis (reviewed in Refs. 35Lane D.P. Nature. 1992; 358: 15-16Crossref PubMed Scopus (4402) Google Scholar, 36Bates S. Vousden K.H. Curr. Opin. Genet. & Dev. 1996; 6: 1-7Crossref PubMed Scopus (337) Google Scholar, 37Canman C. Gilmer E.T.M. Coutts S.B. Kastan M.B. Genes & Dev. 1995; 9: 600-611Crossref PubMed Scopus (399) Google Scholar). The p53 protein encodes a transcription factor that functions as a transcriptional activator or repressor, depending upon the promoter context (38Ludes-Meyers J.H. Subler M.A. Shivakumar C.V. Munoz R.M. Jiang P. Bigger J.E. Brown D.R. Deb S.P. Deb S. Mol. Cell. Biol. 1996; 16: 6009-6019Crossref PubMed Scopus (153) Google Scholar, 39Friedlander P. Haupt Y. Prives C. Oren M. Mol. Cell. Biol. 1996; 16: 4961-4971Crossref PubMed Scopus (268) Google Scholar, 40Ludwig R.L. Bates S. Vousden K.H. Mol. Cell. Biol. 1996; 16: 4952-4960Crossref PubMed Scopus (252) Google Scholar, 41Ginsberg D. Mechta F. Yaniv M. Oren M. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 9979-9983Crossref PubMed Scopus (389) Google Scholar). The p53 protein can up-regulate the expression of a number of downstream genes, such as p21/waf1, insulin-like growth factor binding protein-3, bax, andfas/apo1, implicated in growth inhibition and apoptotic cell death (42El-Deiry W.S. Tokino T. Velculescu V.E. Levy D.B. Parsons R. Trent J.M. Lin D. Mercer W.E. Kinzler K.W. Vogelstein B. Cell. 1993; 75: 817-825Abstract Full Text PDF PubMed Scopus (7869) Google Scholar, 43Buckbinder L. Talbott R. Velasco-Minuel S. Takenaka I. Faha B. Seizinger B.R. Kley N. Nature. 1995; 377: 646-649Crossref PubMed Scopus (802) Google Scholar, 44Miyashita T. Reed J.C. Cell. 1995; 80: 293-299Abstract Full Text PDF PubMed Scopus (301) Google Scholar, 45Owen-Schaub L.B. Zhang W. Cusack J.C. Angelo L.S. Santee S.M. Fujiwara T. Roth J.A. Deisseroth A.B. Zhang W.-W. Kruzel E. Mol. Cell. Biol. 1995; 15: 3032-3040Crossref PubMed Scopus (687) Google Scholar). These regulatory effects require binding of p53 protein to consensus binding sites in the promoter region of target genes (35Lane D.P. Nature. 1992; 358: 15-16Crossref PubMed Scopus (4402) Google Scholar, 46Kern S.E. Pietenpol J.A. Thiagalingam S. Seymour A. Kinzler K.W. Vogelstein B. Science. 1992; 256: 827-830Crossref PubMed Scopus (886) Google Scholar, 47El-Deiry W.S. Kern S.E. Pietenpol J.A. Kinzler K.W. Vogelstein B. Nat. Genet. 1992; 1: 45-49Crossref PubMed Scopus (1728) Google Scholar). The p53-dependent downstream induction or activation of the Fas/Apo1 pathway leads to the activation of a cascade of downstream effector proteases resulting in apoptotic death (12Fraser A. Evan G. Cell. 1996; 85: 781-784Abstract Full Text Full Text PDF PubMed Scopus (608) Google Scholar, 45Owen-Schaub L.B. Zhang W. Cusack J.C. Angelo L.S. Santee S.M. Fujiwara T. Roth J.A. Deisseroth A.B. Zhang W.-W. Kruzel E. Mol. Cell. Biol. 1995; 15: 3032-3040Crossref PubMed Scopus (687) Google Scholar). p53-dependent apoptotic pathways that are independent of the ability of this protein to function as a transcriptional activator have been also suggested (48Caelles C. Helmberg A. Karin M. Nature. 1994; 370: 220-223Crossref PubMed Scopus (831) Google Scholar, 49Haupt Y. Rowan S. Shaulian E. Vousden K.H. Oren M. Genes & Dev. 1995; 9: 2170-2183Crossref PubMed Scopus (516) Google Scholar). The induction of apoptosis requires p53 in most cellular experimental systems, but there are multiple examples of apoptosis in the absence of functional p53 protein, suggesting the presence of p53-independent pathway(s) for apoptosis (50Clarke A.R. Purdie C.A. Harrison D.J. Morris R.G. Bird C.C. Hooper M.L. Wyllie A.H. Nature. 1993; 362: 849-852Crossref PubMed Scopus (2285) Google Scholar, 51Macleod K.F. Hu Y. Jacks T. EMBO J. 1996; 15: 6178-6188Crossref PubMed Scopus (274) Google Scholar, 52Strasser A. Harris A.W. Jacks T. Cory S. Cell. 1994; 79: 329-339Abstract Full Text PDF PubMed Scopus (671) Google Scholar, 53Li M. Hu J. Heermeier K. Hennighausen L. Furth P.A. Cell Growth & Differ. 1996; 7: 13-20PubMed Google Scholar). The precise molecular components of the p53-independent pathway, however, are not known. In a number of different types of cancers, p53 is the most commonly mutated tumor suppressor gene (54Hollstein M. Rice K. Greenblatt M.S. Soussi T. Fuchs R. Sorlie T. Hovig E. Smith-Sorensen B. Montesano R. Harris C.C. Nucleic Acids Res. 1994; 22: 3551-3555PubMed Google Scholar). Lack of p53expression or function is associated with an increased risk of tumor development (55Donehower L.A. Harvey M. Slagle B.L. McArthur M.J. Montgomery Jr., C.A. Butel J.S. Bradley A. Nature. 1992; 356: 215-221Crossref PubMed Scopus (3988) Google Scholar, 56Jacks T. Remington L. Williams B.O. Schmitt E.M. Halachmi S. Bronson R.T. Weinberg R.A. Curr. Biol. 1994; 4: 1-7Abstract Full Text Full Text PDF PubMed Scopus (1719) Google Scholar, 57Malkin D. Li F.P. Strong L.C. Fraumeni Jr., J.F. Nelson C.E. Kim D.R. Kassel J. Gryka M.A. Bischoff F.Z. Tainsky M.A. Friend S.H. Science. 1990; 250: 1233-1238Crossref PubMed Scopus (3013) Google Scholar, 58Shrivastava S. Zou Z. Pirollo K. Blattner W. Chang E.H. Nature. 1990; 348: 747-749Crossref PubMed Scopus (1019) Google Scholar). Most tumor types either contain no p53 protein owing to loss of the p53 alleles or of chromosome 17 wherep53 is located or contain point mutations in thep53 gene that result in mutant protein products that are functionally inactive (54Hollstein M. Rice K. Greenblatt M.S. Soussi T. Fuchs R. Sorlie T. Hovig E. Smith-Sorensen B. Montesano R. Harris C.C. Nucleic Acids Res. 1994; 22: 3551-3555PubMed Google Scholar). Most of the commonly occurring mutations inp53 are located in the DNA-binding or transactivation domains of the protein and render p53 inactive in the transcription of downstream proapoptotic genes such as bax (39Friedlander P. Haupt Y. Prives C. Oren M. Mol. Cell. Biol. 1996; 16: 4961-4971Crossref PubMed Scopus (268) Google Scholar, 40Ludwig R.L. Bates S. Vousden K.H. Mol. Cell. Biol. 1996; 16: 4952-4960Crossref PubMed Scopus (252) Google Scholar, 54Hollstein M. Rice K. Greenblatt M.S. Soussi T. Fuchs R. Sorlie T. Hovig E. Smith-Sorensen B. Montesano R. Harris C.C. Nucleic Acids Res. 1994; 22: 3551-3555PubMed Google Scholar, 59Hollstein M. Sidransky D. Vogelstein B. Harris C. Science. 1991; 253: 49-52Crossref PubMed Scopus (7400) Google Scholar). Some mutant forms of p53 protein can oligomerize with wild-type p53 protein and abrogate its growth-inhibitory functions and thus act as dominant-negative inhibitors of wild-type p53 (46Kern S.E. Pietenpol J.A. Thiagalingam S. Seymour A. Kinzler K.W. Vogelstein B. Science. 1992; 256: 827-830Crossref PubMed Scopus (886) Google Scholar). Wild-type but not mutant p53 protein can cause apoptosis in response to a wide range of exogenous stimuli such as adenovirus E1A protein, anti-cancer agents, or ionizing radiation (62Kastan M.B. Onyekwere O. Sidransky D.B. Vogelstein B. Craig R.W. Cancer Res. 1991; 51: 6304-6311PubMed Google Scholar, 63Kastan M.B. Zhan Q. El-Diery W.S. Carrier F. Jacks T. Walsh W.V. Plunkett B.S. Vogelstein B. Fornace Jr., A.J. Cell. 1992; 71: 587-597Abstract Full Text PDF PubMed Scopus (2922) Google Scholar, 64Zhan Q. Pan S. Bae I. Guillouf C. Liebermann D.A. O'Conner P.M. Fornace Jr., A.J. Oncogene. 1994; 9: 3743-3751PubMed Google Scholar, 65Kuerbitz S.J. Plunkett B.S. Walsh W.V. Kastan M.B. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 7491-7495Crossref PubMed Scopus (1838) Google Scholar, 66Lowe S.W. Ruley H.E. Jacks T. Housman D.E. Cell. 1993; 74: 957-967Abstract Full Text PDF PubMed Scopus (2948) Google Scholar, 67Lowe S.W. Schmitt E.M. Smith S.W. Osborne B.A. Jacks T. Nature. 1993; 362: 847-852Crossref PubMed Scopus (2753) Google Scholar, 68Debbas M. White E. Genes & Dev. 1993; 7: 546-554Crossref PubMed Scopus (830) Google Scholar). Moreover, hypoxia has been shown to induce apoptosis that is dependent on p53, and hypoxic conditions are suggested to provide a selective pressure for p53 mutations (69Graeber T.G. Osmanian C. Jacks T. Housman D.E. Koch C.J. Lowe S.W. Giaccia A.J. Nature. 1996; 379: 88-91Crossref PubMed Scopus (2153) Google Scholar). Several immediate-early genes encoding transcription factors such as c-Fos, c-Jun, EGR-1, Nur77, and c-MYC have been implicated in apoptosis (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar, 22Liu Z.-G. Smith S.W. McLaughlin K.A. Schwartz L.M. Osborne B.A. Nature. 1994; 367: 281-284Crossref PubMed Scopus (494) Google Scholar, 23Woronicz J.D. Calnan B. Ngo V. Winoto A. Nature. 1994; 367: 277-281Crossref PubMed Scopus (504) Google Scholar, 24Sells S.F. Han S.-S. Muthukkumar S. Maddiwar N. Johnstone R. Boghaert E. Gillis D. Liu G. Nair P. Monning S. Collini P. Mattson M.P. Sukhatme V.P. Zimmer S. Wood Jr., D.P. McRoberts J.W. Shi Y. Rangnekar V.M. Mol. Cell. Biol. 1997; 17: 3823-3832Crossref PubMed Scopus (179) Google Scholar, 70Preston G.A. Lyon T.T. Yin Y. Lang J.E. Solomon G. Annab L. Srinivasan D.G. Alcorta D.A. Barrett J.C. Mol. Cell. Biol. 1996; 16: 211-218Crossref PubMed Scopus (205) Google Scholar, 71Estus S. Zaks B.J. Freeman R.S. Gruda M. Bravo R. Johnson E.M. J. Cell Biol. 1994; 127: 1717-1727Crossref PubMed Scopus (786) Google Scholar, 72Hemerking H. Eick D. Science. 1994; 265: 2091-2093Crossref PubMed Scopus (699) Google Scholar, 73Wagner A.J. Kokontis J.M. Hay N. Genes & Dev. 1994; 8: 2817-2830Crossref PubMed Scopus (512) Google Scholar), and c-Fos and c-MYC have been shown to require wild-type p53 for apoptosis (70Preston G.A. Lyon T.T. Yin Y. Lang J.E. Solomon G. Annab L. Srinivasan D.G. Alcorta D.A. Barrett J.C. Mol. Cell. Biol. 1996; 16: 211-218Crossref PubMed Scopus (205) Google Scholar, 72Hemerking H. Eick D. Science. 1994; 265: 2091-2093Crossref PubMed Scopus (699) Google Scholar,73Wagner A.J. Kokontis J.M. Hay N. Genes & Dev. 1994; 8: 2817-2830Crossref PubMed Scopus (512) Google Scholar). It is not known, however, whether the apoptotic action of the other immediate-early genes is dependent on wild-type p53 function. Studies directed at identifying whether p53 is required or not for the transduction of an apoptotic signal from immediate-early proapoptotic genes encoding transcription factors, which couple the early events in the plasma membrane to long term cellular phenotypic changes in the cell, should provide valuable insights into the downstream targets of the transcription factors and help identify a link with components of the cell death pathways. In the course of our studies aimed at understanding the mechanism of EGR-1-mediated apoptosis, we have identified p53 as a direct transcriptional target of EGR-1. Our data suggest that the proapoptotic action of EGR-1 is mediated via wild-type p53. Human melanoma cells A375-C6 and transfected cell lines that expressed pCMV-mEGR1 or vector were cultured as described previously (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar, 34Ahmed M.M. Venkatasubbarao K. Fruitwala S.M. Muthukkumar S. Wood Jr., D.P. Sells S.F. Mohiuddin M. Rangnekar V.M. J. Biol. Chem. 1996; 271: 29231-29237Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar). Pools of approximately 200 transfected clones were maintained as cell lines. Expression constructs m143 and m175 that encode mutant p53 proteins (46Kern S.E. Pietenpol J.A. Thiagalingam S. Seymour A. Kinzler K.W. Vogelstein B. Science. 1992; 256: 827-830Crossref PubMed Scopus (886) Google Scholar) were kindly provided by Bert Vogelstein (Johns Hopkins University School of Medicine, Baltimore, MD). The constructs pCMV-ΔTA, pCMV-ΔRM, pCMV-ΔZF, and pCMV-ΔTA/RM that encode mutant EGR-1 proteins have been previously described (27Gashler A. Sukhatme V.P. Prog. Nucleic Acid Res. 1995; 50: 191-224Crossref PubMed Scopus (551) Google Scholar, 74Gashler A.L. Swaminathan S. Sukhatme V.P. Mol. Cell. Biol. 1993; 13: 4556-4571Crossref PubMed Scopus (211) Google Scholar). Reporter construct p53(2.2+1.6)-CAT, which contains about 2.2 kb of sequence upstream of the human p53 cap site and about 1.6 kb of sequence downstream of the p53 cap site placed downstream of the chloramphenicol acetyltransferase (CAT) cDNA (75Reisman D. Greenberg M. Rotter V. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 5146-5150Crossref PubMed Scopus (70) Google Scholar), was kindly provided by David Reisman (University of South Carolina, Columbia, SC). Polymerase chain reaction was employed to synthesize a 0.8-kb p53 promoter fragment from p53(2.2+1.6)-CAT DNA template. The reactions used a downstream primer (5′-TTTTTGGCTCTAGACTTTTGAGAA-3′) complementary to the region +11 to −9 (underlined) and an upstream primer (5′-TTTTTCTAGAGAAGCGCCTACGCTCCC-3′) corresponding to the region −758 to −774 (underlined) in the p53 promoter. The polymerase chain reaction product was subcloned in the XbaI site upstream of the CAT sequence in pGCAT-C vector and the construct, p53(0.8)-CAT, thus obtained was confirmed for orientation. Whole-cell protein extracts were prepared and analyzed by using Western blot analysis as described previously (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar, 34Ahmed M.M. Venkatasubbarao K. Fruitwala S.M. Muthukkumar S. Wood Jr., D.P. Sells S.F. Mohiuddin M. Rangnekar V.M. J. Biol. Chem. 1996; 271: 29231-29237Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar). EGR-1 (sc-110) and p53 (DO-1) antibodies were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA), and the actin antibody was purchased from Sigma. Cells were quantified for apoptosis by terminal transferase-mediated dUTP-nucleotide-end labeling (TUNEL) as described previously (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar, 34Ahmed M.M. Venkatasubbarao K. Fruitwala S.M. Muthukkumar S. Wood Jr., D.P. Sells S.F. Mohiuddin M. Rangnekar V.M. J. Biol. Chem. 1996; 271: 29231-29237Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar). Transfections were performed by the calcium phosphate coprecipitation method, and stable transfectants were selected in 300 μg/ml G418-sulfate as described previously (20Muthukkumar S. Nair P. Sells S.F. Maddiwar N.G. Jacob R.J. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 6262-6272Crossref PubMed Scopus (105) Google Scholar). Pools of about 200 stably transfected clones were maintained as cell lines. CAT assays were performed by using thin layer chromatography as described previously (76Joshi-Barve S.S. Rangnekar V.V. Sells S.F. Rangnekar V.M. J. Biol. Chem. 1993; 268: 18018-18029Abstract Full Text PDF PubMed Google Scholar, 77Sells S.F. Muthukkumar S. Sukhatme V.P. Crist S.A. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 682-692Crossref PubMed Google Scholar). Total RNA extraction and Northern blot analysis were performed as described previously (77Sells S.F. Muthukkumar S. Sukhatme V.P. Crist S.A. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 682-692Crossref PubMed Google Scholar). The cDNA probe for Egr-1 has been described previously (77Sells S.F. Muthukkumar S. Sukhatme V.P. Crist S.A. Rangnekar V.M. Mol. Cell. Biol. 1995; 15: 682-692Crossref PubMed Google Scholar). The cDNA for human p53 was purchased from the American Type Culture Collection (Rockville, MD). Preparation of nuclear extracts from transfected cells and electrophoretic mobility shift assay were preformed as described previously (76Joshi-Barve S.S. Rangnekar V.V. Sells S.F. Rangnekar V.M. J. Biol. Chem. 1993; 268: 18018-18029Abstract Full Text PDF PubMed Google Scholar). Two complementary primers, 5′-GCGCCTACGCTC-3′ and 5′-GAGCGTAGGCGC-3′, corresponding to the upper and lower strands of EBS-1 (−770 to −762) in the upstream region of the p53 promoter were synthesized at the Macromolecular Synthesis Facility, University of Kentucky. The primers were annealed, end-labeled with [γ-32P]ATP and used as probe. The reaction mixture consisting of nuclear extract, 5 × reaction buffer (1m Tris, pH 7.5, 2.5 m potassium chloride, 0.5m EDTA, 1 m dithiothreitol, glycerol, bovine serum albumin), and 1 μm poly(dI-dC)·poly(dI-dC) was incubated on ice for 15 min. Probe was added, and the mixture was further incubated at room temperature for 20 min. The reaction mixture for the supershift assay consisted of all of the reagents described above for electrophoretic mobility shift assay plus 2 μl of EGR-1 antibody (sc-110X from Santa Cruz Biotechnology, Inc.) or preimmune antibody. The reaction mixtures were preincubated for 20 min on ice, then incubated with the probe for 40 min, and subjected to electrophoresis on polyacrylamide gels to separate the bound complexes from the free probe. To examine ectopically overexpressed EGR-1 as a cause or enhancer of apoptosis, human A375-C6 cells were stably transfected with pCMV-mEGR1, an expression construct for mouse EGR-1 (mEGR1), or with vector for a control. For each of the two constructs, we examined three transfected cell lines for EGR-1 expression by Western blot analysis. Data representative of the transfected cell lines shown in Fig.1 A confirmed overexpression of EGR-1 in the pCMV-mEGR1-transfected cell line as compared with the vector-transfected cell line. These transfected cell lines we" @default.
- W2090585013 created "2016-06-24" @default.
- W2090585013 creator A5001944766 @default.
- W2090585013 creator A5005870476 @default.
- W2090585013 creator A5016554875 @default.
- W2090585013 creator A5022619172 @default.
- W2090585013 creator A5042174723 @default.
- W2090585013 creator A5074300281 @default.
- W2090585013 date "1997-08-01" @default.
- W2090585013 modified "2023-09-27" @default.
- W2090585013 title "Early Growth Response-1-dependent Apoptosis Is Mediated by p53" @default.
- W2090585013 cites W1494104731 @default.
- W2090585013 cites W1567881416 @default.
- W2090585013 cites W1589415602 @default.
- W2090585013 cites W1609607086 @default.
- W2090585013 cites W1797937888 @default.
- W2090585013 cites W1863595524 @default.
- W2090585013 cites W1928064989 @default.
- W2090585013 cites W1966782345 @default.
- W2090585013 cites W1969439479 @default.
- W2090585013 cites W1979319210 @default.
- W2090585013 cites W1980655244 @default.
- W2090585013 cites W1982517685 @default.
- W2090585013 cites W1983386156 @default.
- W2090585013 cites W1984695968 @default.
- W2090585013 cites W1984767179 @default.
- W2090585013 cites W1986179131 @default.
- W2090585013 cites W1988026284 @default.
- W2090585013 cites W1989936068 @default.
- W2090585013 cites W1991830067 @default.
- W2090585013 cites W1992045438 @default.
- W2090585013 cites W2004487378 @default.
- W2090585013 cites W2005542290 @default.
- W2090585013 cites W2006345574 @default.
- W2090585013 cites W2007689766 @default.
- W2090585013 cites W2010298858 @default.
- W2090585013 cites W2010747467 @default.
- W2090585013 cites W2010791130 @default.
- W2090585013 cites W2012053348 @default.
- W2090585013 cites W2013330927 @default.
- W2090585013 cites W2014569682 @default.
- W2090585013 cites W2014928186 @default.
- W2090585013 cites W2015025438 @default.
- W2090585013 cites W2015519364 @default.
- W2090585013 cites W2020796092 @default.
- W2090585013 cites W2023153839 @default.
- W2090585013 cites W2028999918 @default.
- W2090585013 cites W2029529223 @default.
- W2090585013 cites W2030283142 @default.
- W2090585013 cites W2032361307 @default.
- W2090585013 cites W2032490803 @default.
- W2090585013 cites W2042316019 @default.
- W2090585013 cites W2046780997 @default.
- W2090585013 cites W2048428832 @default.
- W2090585013 cites W2051070266 @default.
- W2090585013 cites W2055349083 @default.
- W2090585013 cites W2058591356 @default.
- W2090585013 cites W2059671369 @default.
- W2090585013 cites W2060203869 @default.
- W2090585013 cites W2063535351 @default.
- W2090585013 cites W2068889468 @default.
- W2090585013 cites W2069408483 @default.
- W2090585013 cites W2074222004 @default.
- W2090585013 cites W2074451679 @default.
- W2090585013 cites W2078297328 @default.
- W2090585013 cites W2078581194 @default.
- W2090585013 cites W2083560313 @default.
- W2090585013 cites W2088740611 @default.
- W2090585013 cites W2105007462 @default.
- W2090585013 cites W2110211384 @default.
- W2090585013 cites W2123449896 @default.
- W2090585013 cites W2123995229 @default.
- W2090585013 cites W2124052729 @default.
- W2090585013 cites W2126679757 @default.
- W2090585013 cites W2130385769 @default.
- W2090585013 cites W2148175319 @default.
- W2090585013 cites W2151085515 @default.
- W2090585013 cites W2151642254 @default.
- W2090585013 cites W2153385508 @default.
- W2090585013 cites W2157721629 @default.
- W2090585013 cites W2159435444 @default.
- W2090585013 cites W2167604659 @default.
- W2090585013 cites W4230595181 @default.
- W2090585013 doi "https://doi.org/10.1074/jbc.272.32.20131" @default.
- W2090585013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9242687" @default.
- W2090585013 hasPublicationYear "1997" @default.
- W2090585013 type Work @default.
- W2090585013 sameAs 2090585013 @default.
- W2090585013 citedByCount "164" @default.
- W2090585013 countsByYear W20905850132012 @default.
- W2090585013 countsByYear W20905850132013 @default.
- W2090585013 countsByYear W20905850132014 @default.
- W2090585013 countsByYear W20905850132015 @default.
- W2090585013 countsByYear W20905850132016 @default.
- W2090585013 countsByYear W20905850132017 @default.
- W2090585013 countsByYear W20905850132018 @default.
- W2090585013 countsByYear W20905850132019 @default.
- W2090585013 countsByYear W20905850132020 @default.