Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090599083> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2090599083 endingPage "3004" @default.
- W2090599083 startingPage "2989" @default.
- W2090599083 abstract "Nowadays, multi-label classification methods are of increasing interest in the areas such as text categorization, image annotation and protein function classification. Due to the correlation among the labels, traditional single-label classification methods are not directly applicable to the multi-label classification problem. This paper presents two novel multi-label classification algorithms based on the variable precision neighborhood rough sets, called multi-label classification using rough sets (MLRS) and MLRS using local correlation (MLRS-LC). The proposed algorithms consider two important factors that affect the accuracy of prediction, namely the correlation among the labels and the uncertainty that exists within the mapping between the feature space and the label space. MLRS provides a global view at the label correlation while MLRS-LC deals with the label correlation at the local level. Given a new instance, MLRS determines its location and then computes the probabilities of labels according to its location. The MLRS-LC first finds out its topic and then the probabilities of new instance belonging to each class is calculated in related topic. A series of experiments reported for seven multi-label datasets show that MLRS and MLRS-LC achieve promising performance when compared with some well-known multi-label learning algorithms." @default.
- W2090599083 created "2016-06-24" @default.
- W2090599083 creator A5003799782 @default.
- W2090599083 creator A5009404767 @default.
- W2090599083 creator A5024791074 @default.
- W2090599083 date "2014-05-01" @default.
- W2090599083 modified "2023-10-04" @default.
- W2090599083 title "Multi-label classification by exploiting label correlations" @default.
- W2090599083 cites W1967542092 @default.
- W2090599083 cites W1978603136 @default.
- W2090599083 cites W1999954155 @default.
- W2090599083 cites W2006327656 @default.
- W2090599083 cites W2023441160 @default.
- W2090599083 cites W2052684427 @default.
- W2090599083 cites W2053463056 @default.
- W2090599083 cites W2057532020 @default.
- W2090599083 cites W2057998442 @default.
- W2090599083 cites W2102705755 @default.
- W2090599083 cites W2116373735 @default.
- W2090599083 cites W2119466907 @default.
- W2090599083 cites W2138290126 @default.
- W2090599083 cites W2156935079 @default.
- W2090599083 cites W2340020088 @default.
- W2090599083 cites W2912707296 @default.
- W2090599083 cites W3149942960 @default.
- W2090599083 doi "https://doi.org/10.1016/j.eswa.2013.10.030" @default.
- W2090599083 hasPublicationYear "2014" @default.
- W2090599083 type Work @default.
- W2090599083 sameAs 2090599083 @default.
- W2090599083 citedByCount "75" @default.
- W2090599083 countsByYear W20905990832014 @default.
- W2090599083 countsByYear W20905990832015 @default.
- W2090599083 countsByYear W20905990832016 @default.
- W2090599083 countsByYear W20905990832017 @default.
- W2090599083 countsByYear W20905990832018 @default.
- W2090599083 countsByYear W20905990832019 @default.
- W2090599083 countsByYear W20905990832020 @default.
- W2090599083 countsByYear W20905990832021 @default.
- W2090599083 countsByYear W20905990832022 @default.
- W2090599083 countsByYear W20905990832023 @default.
- W2090599083 crossrefType "journal-article" @default.
- W2090599083 hasAuthorship W2090599083A5003799782 @default.
- W2090599083 hasAuthorship W2090599083A5009404767 @default.
- W2090599083 hasAuthorship W2090599083A5024791074 @default.
- W2090599083 hasConcept C117220453 @default.
- W2090599083 hasConcept C124101348 @default.
- W2090599083 hasConcept C138885662 @default.
- W2090599083 hasConcept C153180895 @default.
- W2090599083 hasConcept C154945302 @default.
- W2090599083 hasConcept C2524010 @default.
- W2090599083 hasConcept C2776401178 @default.
- W2090599083 hasConcept C2776482837 @default.
- W2090599083 hasConcept C2777212361 @default.
- W2090599083 hasConcept C33923547 @default.
- W2090599083 hasConcept C41008148 @default.
- W2090599083 hasConcept C41895202 @default.
- W2090599083 hasConcept C94124525 @default.
- W2090599083 hasConceptScore W2090599083C117220453 @default.
- W2090599083 hasConceptScore W2090599083C124101348 @default.
- W2090599083 hasConceptScore W2090599083C138885662 @default.
- W2090599083 hasConceptScore W2090599083C153180895 @default.
- W2090599083 hasConceptScore W2090599083C154945302 @default.
- W2090599083 hasConceptScore W2090599083C2524010 @default.
- W2090599083 hasConceptScore W2090599083C2776401178 @default.
- W2090599083 hasConceptScore W2090599083C2776482837 @default.
- W2090599083 hasConceptScore W2090599083C2777212361 @default.
- W2090599083 hasConceptScore W2090599083C33923547 @default.
- W2090599083 hasConceptScore W2090599083C41008148 @default.
- W2090599083 hasConceptScore W2090599083C41895202 @default.
- W2090599083 hasConceptScore W2090599083C94124525 @default.
- W2090599083 hasIssue "6" @default.
- W2090599083 hasLocation W20905990831 @default.
- W2090599083 hasOpenAccess W2090599083 @default.
- W2090599083 hasPrimaryLocation W20905990831 @default.
- W2090599083 hasRelatedWork W2016461833 @default.
- W2090599083 hasRelatedWork W2040397200 @default.
- W2090599083 hasRelatedWork W2052253960 @default.
- W2090599083 hasRelatedWork W2147802381 @default.
- W2090599083 hasRelatedWork W2382607599 @default.
- W2090599083 hasRelatedWork W2546942002 @default.
- W2090599083 hasRelatedWork W2760085659 @default.
- W2090599083 hasRelatedWork W2929240682 @default.
- W2090599083 hasRelatedWork W3013319096 @default.
- W2090599083 hasRelatedWork W4280512657 @default.
- W2090599083 hasVolume "41" @default.
- W2090599083 isParatext "false" @default.
- W2090599083 isRetracted "false" @default.
- W2090599083 magId "2090599083" @default.
- W2090599083 workType "article" @default.