Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090820002> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2090820002 endingPage "707" @default.
- W2090820002 startingPage "639" @default.
- W2090820002 abstract "The orbital stability of possibly large semidiscrete shock waves is considered. These waves are traveling wave solutions of discrete in space and continuous in time systems of conservation laws, which constitute a class of lattice dynamical systems (LDSs). The underlying lattice $Delta x mathbb{Z}$ is by nature not invariant by change of frame. Thus semidiscrete shock waves cannot really be transformed into stationary waves, unlike other kinds of approximate shock waves (e.g., viscous or relaxation shocks). This implies that the linearization of the LDS about a given semidiscrete shock wave yields a nonautonomous linear LDS, which cannot be tackled by means of Laplace transform in time. However, viewing the LDS as a finite-difference PDE and performing afterall the change of frame, the profile becomes a stationary solution of the transformed equation. Then, linearizing about the profile, we get an evolution finite-difference PDE in which the spatial operator L, a delayed and advanced differential operator, plays a crucial role in our stability analysis. In particular, we point out an integral formula relating the Green's function of the linearized LDS to the Green's function $G_{lambda}$ of $(lambda-L)$. Specializing to the upwind scheme, we take advantage of the material introduced in an earlier work [S. Benzoni-Gavage, J. Dynam. Differential Equations, 14 (2002), pp. 613--674], in particular of an Evans function, to decompose the Green's function similarly as Zumbrun et al. did for other approximate shock waves. This decomposition relies on explicit representations of the projections involved in the exponential dichotomies and their extensions through the gap lemma. It enables us in turn to prove the orbital stability of the wave, provided that the Evans function D does not vanish in the right half-plane but on the discrete set $2ipisigma mathbb{Z}$ ($sigma$ being the speed of the wave) and that D has a simple root at 0. Additionally, we show that this spectral stability condition is satisfied at least for (extreme) weak shocks. Our spectral stability condition, and more specifically the $D'(0)neq 0$ part, appears to be a relaxed version of the requirement of Chow, Mallet-Paret, and Shen [J. Differential Equations, 149 (1998), pp. 248--291], which we show to be too strong for traveling waves in conservative LDSs." @default.
- W2090820002 created "2016-06-24" @default.
- W2090820002 creator A5003705634 @default.
- W2090820002 creator A5069406809 @default.
- W2090820002 creator A5074045433 @default.
- W2090820002 date "2003-01-01" @default.
- W2090820002 modified "2023-09-23" @default.
- W2090820002 title "Nonlinear Stability of Semidiscrete Shock Waves" @default.
- W2090820002 cites W1527296550 @default.
- W2090820002 cites W1589242138 @default.
- W2090820002 cites W1605561305 @default.
- W2090820002 cites W1965429584 @default.
- W2090820002 cites W1975673758 @default.
- W2090820002 cites W1989751303 @default.
- W2090820002 cites W2011669849 @default.
- W2090820002 cites W2013238203 @default.
- W2090820002 cites W2021530934 @default.
- W2090820002 cites W2040298259 @default.
- W2090820002 cites W2043358921 @default.
- W2090820002 cites W2044884780 @default.
- W2090820002 cites W2046960180 @default.
- W2090820002 cites W2059999403 @default.
- W2090820002 cites W2064534769 @default.
- W2090820002 cites W2076490243 @default.
- W2090820002 cites W2145509112 @default.
- W2090820002 cites W2322889364 @default.
- W2090820002 cites W2951561690 @default.
- W2090820002 cites W4236851096 @default.
- W2090820002 cites W4251477690 @default.
- W2090820002 doi "https://doi.org/10.1137/s0036141002418054" @default.
- W2090820002 hasPublicationYear "2003" @default.
- W2090820002 type Work @default.
- W2090820002 sameAs 2090820002 @default.
- W2090820002 citedByCount "26" @default.
- W2090820002 countsByYear W20908200022012 @default.
- W2090820002 countsByYear W20908200022015 @default.
- W2090820002 countsByYear W20908200022016 @default.
- W2090820002 countsByYear W20908200022018 @default.
- W2090820002 countsByYear W20908200022019 @default.
- W2090820002 countsByYear W20908200022020 @default.
- W2090820002 countsByYear W20908200022022 @default.
- W2090820002 crossrefType "journal-article" @default.
- W2090820002 hasAuthorship W2090820002A5003705634 @default.
- W2090820002 hasAuthorship W2090820002A5069406809 @default.
- W2090820002 hasAuthorship W2090820002A5074045433 @default.
- W2090820002 hasConcept C104317684 @default.
- W2090820002 hasConcept C11210021 @default.
- W2090820002 hasConcept C121332964 @default.
- W2090820002 hasConcept C134306372 @default.
- W2090820002 hasConcept C158448853 @default.
- W2090820002 hasConcept C158622935 @default.
- W2090820002 hasConcept C17020691 @default.
- W2090820002 hasConcept C185592680 @default.
- W2090820002 hasConcept C33923547 @default.
- W2090820002 hasConcept C55493867 @default.
- W2090820002 hasConcept C57879066 @default.
- W2090820002 hasConcept C62520636 @default.
- W2090820002 hasConcept C70477161 @default.
- W2090820002 hasConcept C74650414 @default.
- W2090820002 hasConcept C86339819 @default.
- W2090820002 hasConcept C93779851 @default.
- W2090820002 hasConcept C97937538 @default.
- W2090820002 hasConceptScore W2090820002C104317684 @default.
- W2090820002 hasConceptScore W2090820002C11210021 @default.
- W2090820002 hasConceptScore W2090820002C121332964 @default.
- W2090820002 hasConceptScore W2090820002C134306372 @default.
- W2090820002 hasConceptScore W2090820002C158448853 @default.
- W2090820002 hasConceptScore W2090820002C158622935 @default.
- W2090820002 hasConceptScore W2090820002C17020691 @default.
- W2090820002 hasConceptScore W2090820002C185592680 @default.
- W2090820002 hasConceptScore W2090820002C33923547 @default.
- W2090820002 hasConceptScore W2090820002C55493867 @default.
- W2090820002 hasConceptScore W2090820002C57879066 @default.
- W2090820002 hasConceptScore W2090820002C62520636 @default.
- W2090820002 hasConceptScore W2090820002C70477161 @default.
- W2090820002 hasConceptScore W2090820002C74650414 @default.
- W2090820002 hasConceptScore W2090820002C86339819 @default.
- W2090820002 hasConceptScore W2090820002C93779851 @default.
- W2090820002 hasConceptScore W2090820002C97937538 @default.
- W2090820002 hasIssue "3" @default.
- W2090820002 hasLocation W20908200021 @default.
- W2090820002 hasOpenAccess W2090820002 @default.
- W2090820002 hasPrimaryLocation W20908200021 @default.
- W2090820002 hasRelatedWork W1551797393 @default.
- W2090820002 hasRelatedWork W1985240403 @default.
- W2090820002 hasRelatedWork W2063746115 @default.
- W2090820002 hasRelatedWork W2067404540 @default.
- W2090820002 hasRelatedWork W2144158636 @default.
- W2090820002 hasRelatedWork W2174367849 @default.
- W2090820002 hasRelatedWork W2293090899 @default.
- W2090820002 hasRelatedWork W2554046512 @default.
- W2090820002 hasRelatedWork W2953179366 @default.
- W2090820002 hasRelatedWork W3119041881 @default.
- W2090820002 hasVolume "35" @default.
- W2090820002 isParatext "false" @default.
- W2090820002 isRetracted "false" @default.
- W2090820002 magId "2090820002" @default.
- W2090820002 workType "article" @default.