Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090853142> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2090853142 endingPage "122" @default.
- W2090853142 startingPage "118" @default.
- W2090853142 abstract "Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy." @default.
- W2090853142 created "2016-06-24" @default.
- W2090853142 creator A5018715180 @default.
- W2090853142 creator A5018752474 @default.
- W2090853142 creator A5040369879 @default.
- W2090853142 creator A5059658263 @default.
- W2090853142 date "2010-02-04" @default.
- W2090853142 modified "2023-09-30" @default.
- W2090853142 title "Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil" @default.
- W2090853142 cites W1971735090 @default.
- W2090853142 cites W1977132804 @default.
- W2090853142 cites W2019368606 @default.
- W2090853142 cites W2027197837 @default.
- W2090853142 cites W2046774742 @default.
- W2090853142 cites W2076937971 @default.
- W2090853142 cites W2097529207 @default.
- W2090853142 cites W4301173492 @default.
- W2090853142 doi "https://doi.org/10.1007/s12182-010-0015-y" @default.
- W2090853142 hasPublicationYear "2010" @default.
- W2090853142 type Work @default.
- W2090853142 sameAs 2090853142 @default.
- W2090853142 citedByCount "23" @default.
- W2090853142 countsByYear W20908531422012 @default.
- W2090853142 countsByYear W20908531422013 @default.
- W2090853142 countsByYear W20908531422014 @default.
- W2090853142 countsByYear W20908531422015 @default.
- W2090853142 countsByYear W20908531422016 @default.
- W2090853142 countsByYear W20908531422017 @default.
- W2090853142 countsByYear W20908531422018 @default.
- W2090853142 countsByYear W20908531422019 @default.
- W2090853142 countsByYear W20908531422020 @default.
- W2090853142 countsByYear W20908531422021 @default.
- W2090853142 countsByYear W20908531422022 @default.
- W2090853142 crossrefType "journal-article" @default.
- W2090853142 hasAuthorship W2090853142A5018715180 @default.
- W2090853142 hasAuthorship W2090853142A5018752474 @default.
- W2090853142 hasAuthorship W2090853142A5040369879 @default.
- W2090853142 hasAuthorship W2090853142A5059658263 @default.
- W2090853142 hasBestOaLocation W20908531421 @default.
- W2090853142 hasConcept C11413529 @default.
- W2090853142 hasConcept C119857082 @default.
- W2090853142 hasConcept C127413603 @default.
- W2090853142 hasConcept C154945302 @default.
- W2090853142 hasConcept C185592680 @default.
- W2090853142 hasConcept C186060115 @default.
- W2090853142 hasConcept C188596812 @default.
- W2090853142 hasConcept C20309002 @default.
- W2090853142 hasConcept C204030448 @default.
- W2090853142 hasConcept C41008148 @default.
- W2090853142 hasConcept C42360764 @default.
- W2090853142 hasConcept C43617362 @default.
- W2090853142 hasConcept C50644808 @default.
- W2090853142 hasConcept C548081761 @default.
- W2090853142 hasConcept C73522102 @default.
- W2090853142 hasConcept C86803240 @default.
- W2090853142 hasConcept C8880873 @default.
- W2090853142 hasConceptScore W2090853142C11413529 @default.
- W2090853142 hasConceptScore W2090853142C119857082 @default.
- W2090853142 hasConceptScore W2090853142C127413603 @default.
- W2090853142 hasConceptScore W2090853142C154945302 @default.
- W2090853142 hasConceptScore W2090853142C185592680 @default.
- W2090853142 hasConceptScore W2090853142C186060115 @default.
- W2090853142 hasConceptScore W2090853142C188596812 @default.
- W2090853142 hasConceptScore W2090853142C20309002 @default.
- W2090853142 hasConceptScore W2090853142C204030448 @default.
- W2090853142 hasConceptScore W2090853142C41008148 @default.
- W2090853142 hasConceptScore W2090853142C42360764 @default.
- W2090853142 hasConceptScore W2090853142C43617362 @default.
- W2090853142 hasConceptScore W2090853142C50644808 @default.
- W2090853142 hasConceptScore W2090853142C548081761 @default.
- W2090853142 hasConceptScore W2090853142C73522102 @default.
- W2090853142 hasConceptScore W2090853142C86803240 @default.
- W2090853142 hasConceptScore W2090853142C8880873 @default.
- W2090853142 hasIssue "1" @default.
- W2090853142 hasLocation W20908531421 @default.
- W2090853142 hasOpenAccess W2090853142 @default.
- W2090853142 hasPrimaryLocation W20908531421 @default.
- W2090853142 hasRelatedWork W2090853142 @default.
- W2090853142 hasRelatedWork W2356957943 @default.
- W2090853142 hasRelatedWork W2359549665 @default.
- W2090853142 hasRelatedWork W2362315382 @default.
- W2090853142 hasRelatedWork W2376648758 @default.
- W2090853142 hasRelatedWork W2382761789 @default.
- W2090853142 hasRelatedWork W2386058197 @default.
- W2090853142 hasRelatedWork W2392110728 @default.
- W2090853142 hasRelatedWork W3195272954 @default.
- W2090853142 hasRelatedWork W4368366084 @default.
- W2090853142 hasVolume "7" @default.
- W2090853142 isParatext "false" @default.
- W2090853142 isRetracted "false" @default.
- W2090853142 magId "2090853142" @default.
- W2090853142 workType "article" @default.