Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090897976> ?p ?o ?g. }
- W2090897976 endingPage "56" @default.
- W2090897976 startingPage "47" @default.
- W2090897976 abstract "Background: Magnetic nanostructures and nanoparticles often show novel magnetic phenomena not known from the respective bulk materials. In the past, several methods to prepare such structures have been developed – ranging from wet chemistry-based to physical-based methods such as self-organization or cluster growth. The preparation method has a significant influence on the resulting properties of the generated nanostructures. Taking chemical approaches, this influence may arise from the chemical environment, reaction kinetics and the preparation route. Taking physical approaches, the thermodynamics and the kinetics of the growth mode or – when depositing preformed clusters/nanoparticles on a surface – the landing kinetics and subsequent relaxation processes have a strong impact and thus need to be considered when attempting to control magnetic and structural properties of supported clusters or nanoparticles. Results: In this contribution we focus on mass-filtered Fe nanoparticles in a size range from 4 nm to 10 nm that are generated in a cluster source and subsequently deposited onto two single crystalline substrates: fcc Ni(111)/W(110) and bcc W(110). We use a combined approach of X-ray magnetic circular dichroism (XMCD), reflection high energy electron diffraction (RHEED) and scanning tunneling microscopy (STM) to shed light on the complex and size-dependent relation between magnetic properties, crystallographic structure, orientation and morphology. In particular XMCD reveals that Fe particles on Ni(111)/W(110) have a significantly lower (higher) magnetic spin (orbital) moment compared to bulk iron. The reduced spin moments are attributed to the random particle orientation being confirmed by RHEED together with a competition of magnetic exchange energy at the interface and magnetic anisotropy energy in the particles. The RHEED data also show that the Fe particles on W(110) – despite of the large lattice mismatch between iron and tungsten – are not strained. Thus, strain is most likely not the origin of the enhanced orbital moments as supposed before. Moreover, RHEED uncovers the existence of a spontaneous process for epitaxial alignment of particles below a critical size of about 4 nm. STM basically confirms the shape conservation of the larger particles but shows first indications for an unexpected reshaping occurring at the onset of self-alignment. Conclusion: The magnetic and structural properties of nanoparticles are strongly affected by the deposition kinetics even when soft landing conditions are provided. The orientation of the deposited particles and thus their interface with the substrate strongly depend on the particle size with consequences regarding particularly the magnetic behavior. Spontaneous and epitaxial self-alignment can occur below a certain critical size. This may enable the obtainment of samples with controlled, uniform interfaces and crystallographic orientations even in a random deposition process. However, such a reorientation process might be accompanied by a complex reshaping of the particles." @default.
- W2090897976 created "2016-06-24" @default.
- W2090897976 creator A5007400602 @default.
- W2090897976 creator A5027013061 @default.
- W2090897976 creator A5036560348 @default.
- W2090897976 creator A5086773329 @default.
- W2090897976 date "2011-01-21" @default.
- W2090897976 modified "2023-10-02" @default.
- W2090897976 title "Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces" @default.
- W2090897976 cites W1845242231 @default.
- W2090897976 cites W1964229688 @default.
- W2090897976 cites W1967423075 @default.
- W2090897976 cites W1968248628 @default.
- W2090897976 cites W1969213979 @default.
- W2090897976 cites W1972316388 @default.
- W2090897976 cites W1972375391 @default.
- W2090897976 cites W1974263607 @default.
- W2090897976 cites W1975712290 @default.
- W2090897976 cites W1984817386 @default.
- W2090897976 cites W1984952147 @default.
- W2090897976 cites W1985432369 @default.
- W2090897976 cites W1987529303 @default.
- W2090897976 cites W1990742576 @default.
- W2090897976 cites W1990742871 @default.
- W2090897976 cites W1994540310 @default.
- W2090897976 cites W2002283302 @default.
- W2090897976 cites W2004528111 @default.
- W2090897976 cites W2013331222 @default.
- W2090897976 cites W2019801150 @default.
- W2090897976 cites W2019954276 @default.
- W2090897976 cites W2020593194 @default.
- W2090897976 cites W2021468312 @default.
- W2090897976 cites W2029509672 @default.
- W2090897976 cites W2032323179 @default.
- W2090897976 cites W2032984369 @default.
- W2090897976 cites W2033366440 @default.
- W2090897976 cites W2033481360 @default.
- W2090897976 cites W2034580679 @default.
- W2090897976 cites W2041470326 @default.
- W2090897976 cites W2042038960 @default.
- W2090897976 cites W2045503099 @default.
- W2090897976 cites W2047930238 @default.
- W2090897976 cites W2048660863 @default.
- W2090897976 cites W2060306547 @default.
- W2090897976 cites W2061346939 @default.
- W2090897976 cites W2061774191 @default.
- W2090897976 cites W2062481099 @default.
- W2090897976 cites W2062830143 @default.
- W2090897976 cites W2063607893 @default.
- W2090897976 cites W2065255911 @default.
- W2090897976 cites W2067456093 @default.
- W2090897976 cites W2067702770 @default.
- W2090897976 cites W2068230772 @default.
- W2090897976 cites W2071595942 @default.
- W2090897976 cites W2071770617 @default.
- W2090897976 cites W2071777880 @default.
- W2090897976 cites W2078159811 @default.
- W2090897976 cites W2081103530 @default.
- W2090897976 cites W2082318914 @default.
- W2090897976 cites W2086200452 @default.
- W2090897976 cites W2086743999 @default.
- W2090897976 cites W2093162739 @default.
- W2090897976 cites W2100013593 @default.
- W2090897976 cites W2121758749 @default.
- W2090897976 cites W2139946712 @default.
- W2090897976 cites W2150357459 @default.
- W2090897976 cites W2150853593 @default.
- W2090897976 cites W2152553396 @default.
- W2090897976 cites W2154884739 @default.
- W2090897976 cites W2155852051 @default.
- W2090897976 cites W2158725264 @default.
- W2090897976 cites W2333598814 @default.
- W2090897976 cites W2494700843 @default.
- W2090897976 cites W4249231119 @default.
- W2090897976 cites W2035284231 @default.
- W2090897976 doi "https://doi.org/10.3762/bjnano.2.6" @default.
- W2090897976 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3045938" @default.
- W2090897976 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21977415" @default.
- W2090897976 hasPublicationYear "2011" @default.
- W2090897976 type Work @default.
- W2090897976 sameAs 2090897976 @default.
- W2090897976 citedByCount "24" @default.
- W2090897976 countsByYear W20908979762014 @default.
- W2090897976 countsByYear W20908979762015 @default.
- W2090897976 countsByYear W20908979762016 @default.
- W2090897976 countsByYear W20908979762017 @default.
- W2090897976 countsByYear W20908979762018 @default.
- W2090897976 countsByYear W20908979762019 @default.
- W2090897976 countsByYear W20908979762021 @default.
- W2090897976 countsByYear W20908979762022 @default.
- W2090897976 countsByYear W20908979762023 @default.
- W2090897976 crossrefType "journal-article" @default.
- W2090897976 hasAuthorship W2090897976A5007400602 @default.
- W2090897976 hasAuthorship W2090897976A5027013061 @default.
- W2090897976 hasAuthorship W2090897976A5036560348 @default.
- W2090897976 hasAuthorship W2090897976A5086773329 @default.
- W2090897976 hasBestOaLocation W20908979761 @default.
- W2090897976 hasConcept C110738630 @default.