Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090902478> ?p ?o ?g. }
- W2090902478 endingPage "1081" @default.
- W2090902478 startingPage "1065" @default.
- W2090902478 abstract "The Kohlrausch–Williams–Watts (KWW) function is widely used to describe relaxation behavior in glass‐forming polymers and other condensed systems. The application of this time domain function to frequency domain spectroscopy is, in principle, possible through its Fourier transform. Unfortunately analytical forms for the transform exist only in limited cases, and a number of methods, which circumvent this limitation, are described in the literature. Here we have revisited the problem of evaluating the Fourier integral in the general case, but with the specific aim of producing a fast and accurate algorithm suitable for use within common spreadsheet applications available on personal computers. Two methods were examined, a corrected discrete Fourier transform and, more successfully, a two‐series expansion representation. A previous problem associated with the use of complementary series, that they may not adequately cover the whole range of evaluation of the transform, was overcome by the substitution of a Padé approximant for one of the series. This was found to provide the basis for a robust and effective algorithm whose accuracy was tested against both symbolic mathematical expressions and standard tabulated values. The use of this algorithm in iterative nonlinear least squares curve fitting routines is illustrated by reference to quasi‐elastic neutron scattering data and dielectric relaxation spectra. The former involves a convolution of the real part of the integral with the instrumental resolution function; very satisfactory fits to scattering spectra for poly(vinyl acetate) and poly(isobutylene), at temperatures above their glass transitions, was achieved and the KWW characteristic relaxation parameters established. The dielectric spectrum due to the α‐relaxation of poly(vinyl acetate) is similarly well‐described, here using both the real and the imaginary parts of the integral. The KWW description of the PVAc relaxation is compared with that using the Havriliak–Negami equation and was found to provide an equally acceptable description of the data, and by using one less adjustable parameter." @default.
- W2090902478 created "2016-06-24" @default.
- W2090902478 creator A5030984417 @default.
- W2090902478 creator A5040579102 @default.
- W2090902478 creator A5043094753 @default.
- W2090902478 creator A5044859384 @default.
- W2090902478 creator A5080231775 @default.
- W2090902478 date "2006-11-29" @default.
- W2090902478 modified "2023-09-27" @default.
- W2090902478 title "An Improved Algorithm for the Fourier Integral of the KWW Function and Its Application to Neutron Scattering and Dielectric Data" @default.
- W2090902478 cites W1974630074 @default.
- W2090902478 cites W1979765007 @default.
- W2090902478 cites W1983295974 @default.
- W2090902478 cites W1990801105 @default.
- W2090902478 cites W1994834151 @default.
- W2090902478 cites W1995915598 @default.
- W2090902478 cites W1996508800 @default.
- W2090902478 cites W2000847705 @default.
- W2090902478 cites W2005706245 @default.
- W2090902478 cites W2019453149 @default.
- W2090902478 cites W2021346095 @default.
- W2090902478 cites W2021641921 @default.
- W2090902478 cites W2022297131 @default.
- W2090902478 cites W2034875509 @default.
- W2090902478 cites W2046288556 @default.
- W2090902478 cites W2052776769 @default.
- W2090902478 cites W2056879402 @default.
- W2090902478 cites W2057462388 @default.
- W2090902478 cites W2061940366 @default.
- W2090902478 cites W2062067039 @default.
- W2090902478 cites W2064387473 @default.
- W2090902478 cites W2076462129 @default.
- W2090902478 cites W2078523814 @default.
- W2090902478 cites W2080521787 @default.
- W2090902478 cites W208082252 @default.
- W2090902478 cites W2083829012 @default.
- W2090902478 cites W2086942014 @default.
- W2090902478 cites W2088654232 @default.
- W2090902478 cites W2091570098 @default.
- W2090902478 cites W2107316599 @default.
- W2090902478 cites W2163683882 @default.
- W2090902478 doi "https://doi.org/10.1080/00222340600939419" @default.
- W2090902478 hasPublicationYear "2006" @default.
- W2090902478 type Work @default.
- W2090902478 sameAs 2090902478 @default.
- W2090902478 citedByCount "9" @default.
- W2090902478 countsByYear W20909024782015 @default.
- W2090902478 countsByYear W20909024782016 @default.
- W2090902478 countsByYear W20909024782017 @default.
- W2090902478 countsByYear W20909024782020 @default.
- W2090902478 crossrefType "journal-article" @default.
- W2090902478 hasAuthorship W2090902478A5030984417 @default.
- W2090902478 hasAuthorship W2090902478A5040579102 @default.
- W2090902478 hasAuthorship W2090902478A5043094753 @default.
- W2090902478 hasAuthorship W2090902478A5044859384 @default.
- W2090902478 hasAuthorship W2090902478A5080231775 @default.
- W2090902478 hasConcept C102519508 @default.
- W2090902478 hasConcept C11413529 @default.
- W2090902478 hasConcept C119857082 @default.
- W2090902478 hasConcept C134306372 @default.
- W2090902478 hasConcept C14036430 @default.
- W2090902478 hasConcept C15744967 @default.
- W2090902478 hasConcept C2776029896 @default.
- W2090902478 hasConcept C33923547 @default.
- W2090902478 hasConcept C41008148 @default.
- W2090902478 hasConcept C45347329 @default.
- W2090902478 hasConcept C50644808 @default.
- W2090902478 hasConcept C77805123 @default.
- W2090902478 hasConcept C78458016 @default.
- W2090902478 hasConcept C86803240 @default.
- W2090902478 hasConceptScore W2090902478C102519508 @default.
- W2090902478 hasConceptScore W2090902478C11413529 @default.
- W2090902478 hasConceptScore W2090902478C119857082 @default.
- W2090902478 hasConceptScore W2090902478C134306372 @default.
- W2090902478 hasConceptScore W2090902478C14036430 @default.
- W2090902478 hasConceptScore W2090902478C15744967 @default.
- W2090902478 hasConceptScore W2090902478C2776029896 @default.
- W2090902478 hasConceptScore W2090902478C33923547 @default.
- W2090902478 hasConceptScore W2090902478C41008148 @default.
- W2090902478 hasConceptScore W2090902478C45347329 @default.
- W2090902478 hasConceptScore W2090902478C50644808 @default.
- W2090902478 hasConceptScore W2090902478C77805123 @default.
- W2090902478 hasConceptScore W2090902478C78458016 @default.
- W2090902478 hasConceptScore W2090902478C86803240 @default.
- W2090902478 hasIssue "6" @default.
- W2090902478 hasLocation W20909024781 @default.
- W2090902478 hasOpenAccess W2090902478 @default.
- W2090902478 hasPrimaryLocation W20909024781 @default.
- W2090902478 hasRelatedWork W2042966734 @default.
- W2090902478 hasRelatedWork W2044337116 @default.
- W2090902478 hasRelatedWork W2049078237 @default.
- W2090902478 hasRelatedWork W2071794268 @default.
- W2090902478 hasRelatedWork W2073495840 @default.
- W2090902478 hasRelatedWork W2334093999 @default.
- W2090902478 hasRelatedWork W2594599357 @default.
- W2090902478 hasRelatedWork W2907358715 @default.
- W2090902478 hasRelatedWork W2937560759 @default.
- W2090902478 hasRelatedWork W3134991707 @default.