Matches in SemOpenAlex for { <https://semopenalex.org/work/W2090985907> ?p ?o ?g. }
- W2090985907 endingPage "676" @default.
- W2090985907 startingPage "667" @default.
- W2090985907 abstract "ObjectiveMicrovascular malperfusion after myocardial infarction leads to infarct expansion, adverse remodeling, and functional impairment. Native reparative mechanisms exist but are inadequate to vascularize ischemic myocardium. We hypothesized that a 3-dimensional human fibroblast culture (3DFC) functions as a sustained source of angiogenic cytokines, thereby augmenting native angiogenesis and limiting adverse effects of myocardial ischemia.MethodsLewis rats underwent ligation of the left anterior descending coronary artery to induce heart failure; experimental animals received a 3DFC scaffold to the ischemic region. Border-zone tissue was analyzed for the presence of human fibroblast surface protein, vascular endothelial growth factor, and hepatocyte growth factor. Cardiac function was assessed with echocardiography and pressure–volume conductance. Hearts underwent immunohistochemical analysis of angiogenesis by co-localization of platelet endothelial cell adhesion molecule and alpha smooth muscle actin and by digital analysis of ventricular geometry. Microvascular angiography was performed with fluorescein-labeled lectin to assess perfusion.ResultsImmunoblotting confirmed the presence of human fibroblast surface protein in rats receiving 3DFC, indicating survival of transplanted cells. Increased expression of vascular endothelial growth factor and hepatocyte growth factor in experimental rats confirmed elution by the 3DFC. Microvasculature expressing platelet endothelial cell adhesion molecule/alpha smooth muscle actin was increased in infarct and border-zone regions of rats receiving 3DFC. Microvascular perfusion was also improved in infarct and border-zone regions in these rats. Rats receiving 3DFC had increased wall thickness, smaller infarct area, and smaller infarct fraction. Echocardiography and pressure–volume measurements showed that cardiac function was preserved in these rats.ConclusionsApplication of a bioengineered 3DFC augments native angiogenesis through delivery of angiogenic cytokines to ischemic myocardium. This yields improved microvascular perfusion, limits infarct progression and adverse remodeling, and improves ventricular function. Microvascular malperfusion after myocardial infarction leads to infarct expansion, adverse remodeling, and functional impairment. Native reparative mechanisms exist but are inadequate to vascularize ischemic myocardium. We hypothesized that a 3-dimensional human fibroblast culture (3DFC) functions as a sustained source of angiogenic cytokines, thereby augmenting native angiogenesis and limiting adverse effects of myocardial ischemia. Lewis rats underwent ligation of the left anterior descending coronary artery to induce heart failure; experimental animals received a 3DFC scaffold to the ischemic region. Border-zone tissue was analyzed for the presence of human fibroblast surface protein, vascular endothelial growth factor, and hepatocyte growth factor. Cardiac function was assessed with echocardiography and pressure–volume conductance. Hearts underwent immunohistochemical analysis of angiogenesis by co-localization of platelet endothelial cell adhesion molecule and alpha smooth muscle actin and by digital analysis of ventricular geometry. Microvascular angiography was performed with fluorescein-labeled lectin to assess perfusion. Immunoblotting confirmed the presence of human fibroblast surface protein in rats receiving 3DFC, indicating survival of transplanted cells. Increased expression of vascular endothelial growth factor and hepatocyte growth factor in experimental rats confirmed elution by the 3DFC. Microvasculature expressing platelet endothelial cell adhesion molecule/alpha smooth muscle actin was increased in infarct and border-zone regions of rats receiving 3DFC. Microvascular perfusion was also improved in infarct and border-zone regions in these rats. Rats receiving 3DFC had increased wall thickness, smaller infarct area, and smaller infarct fraction. Echocardiography and pressure–volume measurements showed that cardiac function was preserved in these rats. Application of a bioengineered 3DFC augments native angiogenesis through delivery of angiogenic cytokines to ischemic myocardium. This yields improved microvascular perfusion, limits infarct progression and adverse remodeling, and improves ventricular function." @default.
- W2090985907 created "2016-06-24" @default.
- W2090985907 creator A5029467770 @default.
- W2090985907 creator A5040963307 @default.
- W2090985907 creator A5049310596 @default.
- W2090985907 creator A5057441250 @default.
- W2090985907 creator A5063472572 @default.
- W2090985907 creator A5073348877 @default.
- W2090985907 creator A5075181839 @default.
- W2090985907 creator A5079924850 @default.
- W2090985907 creator A5085669663 @default.
- W2090985907 creator A5088764646 @default.
- W2090985907 date "2010-09-01" @default.
- W2090985907 modified "2023-09-23" @default.
- W2090985907 title "Tissue-engineered pro-angiogenic fibroblast scaffold improves myocardial perfusion and function and limits ventricular remodeling after infarction" @default.
- W2090985907 cites W158281719 @default.
- W2090985907 cites W2001599322 @default.
- W2090985907 cites W2027239974 @default.
- W2090985907 cites W2031435841 @default.
- W2090985907 cites W2033410691 @default.
- W2090985907 cites W2035192492 @default.
- W2090985907 cites W2037863500 @default.
- W2090985907 cites W2039412917 @default.
- W2090985907 cites W2043101178 @default.
- W2090985907 cites W2047759315 @default.
- W2090985907 cites W2055132229 @default.
- W2090985907 cites W2055162584 @default.
- W2090985907 cites W2055880852 @default.
- W2090985907 cites W2056679676 @default.
- W2090985907 cites W2071895235 @default.
- W2090985907 cites W2081080034 @default.
- W2090985907 cites W2085177957 @default.
- W2090985907 cites W2087535057 @default.
- W2090985907 cites W2094457676 @default.
- W2090985907 cites W2099564726 @default.
- W2090985907 cites W2109060491 @default.
- W2090985907 cites W2112318295 @default.
- W2090985907 cites W2116446546 @default.
- W2090985907 cites W2123549838 @default.
- W2090985907 cites W2127629943 @default.
- W2090985907 cites W2134750165 @default.
- W2090985907 cites W2153138904 @default.
- W2090985907 cites W2155090369 @default.
- W2090985907 cites W2155922930 @default.
- W2090985907 cites W2157369309 @default.
- W2090985907 cites W2161832319 @default.
- W2090985907 cites W2169859308 @default.
- W2090985907 cites W2170774676 @default.
- W2090985907 doi "https://doi.org/10.1016/j.jtcvs.2009.12.037" @default.
- W2090985907 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4175745" @default.
- W2090985907 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20363480" @default.
- W2090985907 hasPublicationYear "2010" @default.
- W2090985907 type Work @default.
- W2090985907 sameAs 2090985907 @default.
- W2090985907 citedByCount "27" @default.
- W2090985907 countsByYear W20909859072012 @default.
- W2090985907 countsByYear W20909859072013 @default.
- W2090985907 countsByYear W20909859072014 @default.
- W2090985907 countsByYear W20909859072015 @default.
- W2090985907 countsByYear W20909859072016 @default.
- W2090985907 countsByYear W20909859072017 @default.
- W2090985907 countsByYear W20909859072018 @default.
- W2090985907 countsByYear W20909859072019 @default.
- W2090985907 countsByYear W20909859072020 @default.
- W2090985907 countsByYear W20909859072021 @default.
- W2090985907 crossrefType "journal-article" @default.
- W2090985907 hasAuthorship W2090985907A5029467770 @default.
- W2090985907 hasAuthorship W2090985907A5040963307 @default.
- W2090985907 hasAuthorship W2090985907A5049310596 @default.
- W2090985907 hasAuthorship W2090985907A5057441250 @default.
- W2090985907 hasAuthorship W2090985907A5063472572 @default.
- W2090985907 hasAuthorship W2090985907A5073348877 @default.
- W2090985907 hasAuthorship W2090985907A5075181839 @default.
- W2090985907 hasAuthorship W2090985907A5079924850 @default.
- W2090985907 hasAuthorship W2090985907A5085669663 @default.
- W2090985907 hasAuthorship W2090985907A5088764646 @default.
- W2090985907 hasBestOaLocation W20909859071 @default.
- W2090985907 hasConcept C126322002 @default.
- W2090985907 hasConcept C142724271 @default.
- W2090985907 hasConcept C146957229 @default.
- W2090985907 hasConcept C164705383 @default.
- W2090985907 hasConcept C167734588 @default.
- W2090985907 hasConcept C170493617 @default.
- W2090985907 hasConcept C2775960820 @default.
- W2090985907 hasConcept C2776996007 @default.
- W2090985907 hasConcept C2777025900 @default.
- W2090985907 hasConcept C2777408375 @default.
- W2090985907 hasConcept C2777587049 @default.
- W2090985907 hasConcept C2780394083 @default.
- W2090985907 hasConcept C500558357 @default.
- W2090985907 hasConcept C71924100 @default.
- W2090985907 hasConceptScore W2090985907C126322002 @default.
- W2090985907 hasConceptScore W2090985907C142724271 @default.
- W2090985907 hasConceptScore W2090985907C146957229 @default.
- W2090985907 hasConceptScore W2090985907C164705383 @default.
- W2090985907 hasConceptScore W2090985907C167734588 @default.
- W2090985907 hasConceptScore W2090985907C170493617 @default.
- W2090985907 hasConceptScore W2090985907C2775960820 @default.