Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091139114> ?p ?o ?g. }
- W2091139114 endingPage "9038" @default.
- W2091139114 startingPage "9022" @default.
- W2091139114 abstract "The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement." @default.
- W2091139114 created "2016-06-24" @default.
- W2091139114 creator A5031968254 @default.
- W2091139114 creator A5042226329 @default.
- W2091139114 creator A5067290513 @default.
- W2091139114 creator A5070137168 @default.
- W2091139114 creator A5089503468 @default.
- W2091139114 date "2015-04-16" @default.
- W2091139114 modified "2023-10-17" @default.
- W2091139114 title "Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement" @default.
- W2091139114 cites W1966455806 @default.
- W2091139114 cites W1990935673 @default.
- W2091139114 cites W1992941740 @default.
- W2091139114 cites W2013173737 @default.
- W2091139114 cites W2022543007 @default.
- W2091139114 cites W2041179708 @default.
- W2091139114 cites W2043212614 @default.
- W2091139114 cites W2059703783 @default.
- W2091139114 cites W2082740732 @default.
- W2091139114 cites W2086061329 @default.
- W2091139114 cites W2090939188 @default.
- W2091139114 cites W2102855006 @default.
- W2091139114 cites W2108225567 @default.
- W2091139114 cites W2111135417 @default.
- W2091139114 cites W2127917887 @default.
- W2091139114 cites W2133935519 @default.
- W2091139114 cites W2135270981 @default.
- W2091139114 cites W2153635508 @default.
- W2091139114 cites W2157409090 @default.
- W2091139114 cites W2160601648 @default.
- W2091139114 cites W2164006146 @default.
- W2091139114 cites W2221831393 @default.
- W2091139114 cites W2574524654 @default.
- W2091139114 cites W4239510810 @default.
- W2091139114 cites W789458867 @default.
- W2091139114 doi "https://doi.org/10.3390/s150409022" @default.
- W2091139114 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4431272" @default.
- W2091139114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25894941" @default.
- W2091139114 hasPublicationYear "2015" @default.
- W2091139114 type Work @default.
- W2091139114 sameAs 2091139114 @default.
- W2091139114 citedByCount "59" @default.
- W2091139114 countsByYear W20911391142016 @default.
- W2091139114 countsByYear W20911391142017 @default.
- W2091139114 countsByYear W20911391142018 @default.
- W2091139114 countsByYear W20911391142019 @default.
- W2091139114 countsByYear W20911391142020 @default.
- W2091139114 countsByYear W20911391142021 @default.
- W2091139114 countsByYear W20911391142022 @default.
- W2091139114 countsByYear W20911391142023 @default.
- W2091139114 crossrefType "journal-article" @default.
- W2091139114 hasAuthorship W2091139114A5031968254 @default.
- W2091139114 hasAuthorship W2091139114A5042226329 @default.
- W2091139114 hasAuthorship W2091139114A5067290513 @default.
- W2091139114 hasAuthorship W2091139114A5070137168 @default.
- W2091139114 hasAuthorship W2091139114A5089503468 @default.
- W2091139114 hasBestOaLocation W20911391141 @default.
- W2091139114 hasConcept C118552586 @default.
- W2091139114 hasConcept C12267149 @default.
- W2091139114 hasConcept C138885662 @default.
- W2091139114 hasConcept C153180895 @default.
- W2091139114 hasConcept C154945302 @default.
- W2091139114 hasConcept C15744967 @default.
- W2091139114 hasConcept C2776401178 @default.
- W2091139114 hasConcept C2777515770 @default.
- W2091139114 hasConcept C31972630 @default.
- W2091139114 hasConcept C41008148 @default.
- W2091139114 hasConcept C41895202 @default.
- W2091139114 hasConcept C50644808 @default.
- W2091139114 hasConcept C52622490 @default.
- W2091139114 hasConcept C95623464 @default.
- W2091139114 hasConceptScore W2091139114C118552586 @default.
- W2091139114 hasConceptScore W2091139114C12267149 @default.
- W2091139114 hasConceptScore W2091139114C138885662 @default.
- W2091139114 hasConceptScore W2091139114C153180895 @default.
- W2091139114 hasConceptScore W2091139114C154945302 @default.
- W2091139114 hasConceptScore W2091139114C15744967 @default.
- W2091139114 hasConceptScore W2091139114C2776401178 @default.
- W2091139114 hasConceptScore W2091139114C2777515770 @default.
- W2091139114 hasConceptScore W2091139114C31972630 @default.
- W2091139114 hasConceptScore W2091139114C41008148 @default.
- W2091139114 hasConceptScore W2091139114C41895202 @default.
- W2091139114 hasConceptScore W2091139114C50644808 @default.
- W2091139114 hasConceptScore W2091139114C52622490 @default.
- W2091139114 hasConceptScore W2091139114C95623464 @default.
- W2091139114 hasIssue "4" @default.
- W2091139114 hasLocation W20911391141 @default.
- W2091139114 hasLocation W20911391142 @default.
- W2091139114 hasLocation W20911391143 @default.
- W2091139114 hasLocation W20911391144 @default.
- W2091139114 hasLocation W20911391145 @default.
- W2091139114 hasOpenAccess W2091139114 @default.
- W2091139114 hasPrimaryLocation W20911391141 @default.
- W2091139114 hasRelatedWork W2041636156 @default.
- W2091139114 hasRelatedWork W2126100045 @default.
- W2091139114 hasRelatedWork W2160451891 @default.
- W2091139114 hasRelatedWork W2336974148 @default.
- W2091139114 hasRelatedWork W2381773606 @default.