Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091201893> ?p ?o ?g. }
- W2091201893 endingPage "2551" @default.
- W2091201893 startingPage "2533" @default.
- W2091201893 abstract "Elevated levels of fine particulate matter (PM2.5) have been associated with adverse effects on human health, but whether specific components of PM2.5 are responsible for specific health effects is still under investigation. A complementary approach to examining species-specific associations is to assess associations between health outcomes and sources contributing to PM2.5. This approach could help target and regulate the sources that contribute most to adverse health effects. Various techniques have been developed to quantify source impacts on air quality, allowing examination of their health impacts. We compare two conceptually different approaches to source apportionment (SA): a receptor model and an emissions-based air-quality model. Daily source impacts for July 2001 and January 2002 at four sites in the southeastern US were calculated using CMB-LGO, an extended chemical mass balance receptor model incorporating the Lipschitz global optimizer, and EPA's Models-3 emissions-based air-quality modeling system (MM5–SMOKE–community multiscale air-quality (CMAQ)). The receptor model captured more of the temporal variation in source impacts at a specific receptor site compared to the emissions-based model. Driven by data at a single site, receptor models may have some significant shortcomings with respect to spatial representativeness (unless a reduced study area is used or data from multiple sites are available). SA results from emissions-based models, such as CMAQ, may be more spatially representative as they represent an average grid-cell value. Limitations in the ability to model daily fluctuations in emissions, however, lead to results being driven mainly by regional meteorological trends, likely underestimating the true daily variations in local source impacts. Using results from either approach in a health study would likely introduce an attenuation of the observed association, due to limited spatial representativeness in receptor modeling results and to limited temporal representativeness in emissions-based models results." @default.
- W2091201893 created "2016-06-24" @default.
- W2091201893 creator A5006620723 @default.
- W2091201893 creator A5041855653 @default.
- W2091201893 creator A5045769037 @default.
- W2091201893 creator A5067004889 @default.
- W2091201893 creator A5084254575 @default.
- W2091201893 date "2006-05-01" @default.
- W2091201893 modified "2023-10-14" @default.
- W2091201893 title "Source apportionment of PM2.5 in the southeastern United States using receptor and emissions-based models: Conceptual differences and implications for time-series health studies" @default.
- W2091201893 cites W1964000645 @default.
- W2091201893 cites W1967922485 @default.
- W2091201893 cites W1974712491 @default.
- W2091201893 cites W1979655103 @default.
- W2091201893 cites W1986020420 @default.
- W2091201893 cites W1991834964 @default.
- W2091201893 cites W1998643121 @default.
- W2091201893 cites W2001209546 @default.
- W2091201893 cites W2009444169 @default.
- W2091201893 cites W2014527936 @default.
- W2091201893 cites W2020486620 @default.
- W2091201893 cites W2022018373 @default.
- W2091201893 cites W2022738517 @default.
- W2091201893 cites W2037870866 @default.
- W2091201893 cites W2038343834 @default.
- W2091201893 cites W2040718868 @default.
- W2091201893 cites W2042355379 @default.
- W2091201893 cites W2053090335 @default.
- W2091201893 cites W2058829252 @default.
- W2091201893 cites W2059605095 @default.
- W2091201893 cites W2061045502 @default.
- W2091201893 cites W2063165760 @default.
- W2091201893 cites W2065086333 @default.
- W2091201893 cites W2065560183 @default.
- W2091201893 cites W2068008956 @default.
- W2091201893 cites W2070890280 @default.
- W2091201893 cites W2083215156 @default.
- W2091201893 cites W2083354305 @default.
- W2091201893 cites W2101039127 @default.
- W2091201893 cites W2117085028 @default.
- W2091201893 cites W2130304844 @default.
- W2091201893 cites W2136614625 @default.
- W2091201893 cites W2143171329 @default.
- W2091201893 cites W2151133928 @default.
- W2091201893 cites W2166604768 @default.
- W2091201893 cites W2318698569 @default.
- W2091201893 cites W3139741858 @default.
- W2091201893 cites W348402695 @default.
- W2091201893 doi "https://doi.org/10.1016/j.atmosenv.2005.12.019" @default.
- W2091201893 hasPublicationYear "2006" @default.
- W2091201893 type Work @default.
- W2091201893 sameAs 2091201893 @default.
- W2091201893 citedByCount "76" @default.
- W2091201893 countsByYear W20912018932012 @default.
- W2091201893 countsByYear W20912018932013 @default.
- W2091201893 countsByYear W20912018932014 @default.
- W2091201893 countsByYear W20912018932015 @default.
- W2091201893 countsByYear W20912018932016 @default.
- W2091201893 countsByYear W20912018932017 @default.
- W2091201893 countsByYear W20912018932018 @default.
- W2091201893 countsByYear W20912018932019 @default.
- W2091201893 countsByYear W20912018932020 @default.
- W2091201893 countsByYear W20912018932021 @default.
- W2091201893 countsByYear W20912018932022 @default.
- W2091201893 countsByYear W20912018932023 @default.
- W2091201893 crossrefType "journal-article" @default.
- W2091201893 hasAuthorship W2091201893A5006620723 @default.
- W2091201893 hasAuthorship W2091201893A5041855653 @default.
- W2091201893 hasAuthorship W2091201893A5045769037 @default.
- W2091201893 hasAuthorship W2091201893A5067004889 @default.
- W2091201893 hasAuthorship W2091201893A5084254575 @default.
- W2091201893 hasConcept C105795698 @default.
- W2091201893 hasConcept C126314574 @default.
- W2091201893 hasConcept C127313418 @default.
- W2091201893 hasConcept C153294291 @default.
- W2091201893 hasConcept C17744445 @default.
- W2091201893 hasConcept C18903297 @default.
- W2091201893 hasConcept C199539241 @default.
- W2091201893 hasConcept C205649164 @default.
- W2091201893 hasConcept C2776845762 @default.
- W2091201893 hasConcept C2778337684 @default.
- W2091201893 hasConcept C33923547 @default.
- W2091201893 hasConcept C37381756 @default.
- W2091201893 hasConcept C39432304 @default.
- W2091201893 hasConcept C559116025 @default.
- W2091201893 hasConcept C71924100 @default.
- W2091201893 hasConcept C86803240 @default.
- W2091201893 hasConcept C91586092 @default.
- W2091201893 hasConcept C99454951 @default.
- W2091201893 hasConceptScore W2091201893C105795698 @default.
- W2091201893 hasConceptScore W2091201893C126314574 @default.
- W2091201893 hasConceptScore W2091201893C127313418 @default.
- W2091201893 hasConceptScore W2091201893C153294291 @default.
- W2091201893 hasConceptScore W2091201893C17744445 @default.
- W2091201893 hasConceptScore W2091201893C18903297 @default.
- W2091201893 hasConceptScore W2091201893C199539241 @default.
- W2091201893 hasConceptScore W2091201893C205649164 @default.
- W2091201893 hasConceptScore W2091201893C2776845762 @default.