Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091240423> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W2091240423 endingPage "2130" @default.
- W2091240423 startingPage "2130" @default.
- W2091240423 abstract "Pattern recognition technology that has been developed for recognizing units of human speech can often be adapted for both recognition and analysis of animal vocalizations. This paper discusses two types of speech recognition algorithms, template based and statistics based, with respect to their ease of deployment and potential application to the objective, quantitative analysis of animal vocalizations. Implementations of the two types of algorithms have been compared using a large database of song units recorded from two song bird species. The algorithms exhibit different strengths and weaknesses. The template-based dynamic time-warping algorithm provides quantitative sound comparisons that are directly useful to a researcher, but selection of training materials depends on expert knowledge. The statistics-based hidden Markov model algorithm requires more training data, but usually performs better in noisy environments and with more variable vocalizations. While both algorithms are accurate in restricted domains, recognition performance could be improved if it were based on species-specific features extracted from the acoustic input. [Work supported by NIH 1-F32-MH10525 and ARO DACA88-95-C-0016.]" @default.
- W2091240423 created "2016-06-24" @default.
- W2091240423 creator A5020357707 @default.
- W2091240423 date "1999-10-01" @default.
- W2091240423 modified "2023-09-25" @default.
- W2091240423 title "Speech recognition meets bird song: A comparison of statistics‐based and template‐based techniques" @default.
- W2091240423 doi "https://doi.org/10.1121/1.428011" @default.
- W2091240423 hasPublicationYear "1999" @default.
- W2091240423 type Work @default.
- W2091240423 sameAs 2091240423 @default.
- W2091240423 citedByCount "9" @default.
- W2091240423 countsByYear W20912404232012 @default.
- W2091240423 crossrefType "journal-article" @default.
- W2091240423 hasAuthorship W2091240423A5020357707 @default.
- W2091240423 hasConcept C153180895 @default.
- W2091240423 hasConcept C154945302 @default.
- W2091240423 hasConcept C23224414 @default.
- W2091240423 hasConcept C28490314 @default.
- W2091240423 hasConcept C41008148 @default.
- W2091240423 hasConcept C88516994 @default.
- W2091240423 hasConceptScore W2091240423C153180895 @default.
- W2091240423 hasConceptScore W2091240423C154945302 @default.
- W2091240423 hasConceptScore W2091240423C23224414 @default.
- W2091240423 hasConceptScore W2091240423C28490314 @default.
- W2091240423 hasConceptScore W2091240423C41008148 @default.
- W2091240423 hasConceptScore W2091240423C88516994 @default.
- W2091240423 hasIssue "4_Supplement" @default.
- W2091240423 hasLocation W20912404231 @default.
- W2091240423 hasOpenAccess W2091240423 @default.
- W2091240423 hasPrimaryLocation W20912404231 @default.
- W2091240423 hasRelatedWork W159541246 @default.
- W2091240423 hasRelatedWork W2050318184 @default.
- W2091240423 hasRelatedWork W2052371591 @default.
- W2091240423 hasRelatedWork W2054283377 @default.
- W2091240423 hasRelatedWork W2099681294 @default.
- W2091240423 hasRelatedWork W2168993446 @default.
- W2091240423 hasRelatedWork W2235458433 @default.
- W2091240423 hasRelatedWork W2362137626 @default.
- W2091240423 hasRelatedWork W2387825067 @default.
- W2091240423 hasRelatedWork W42619919 @default.
- W2091240423 hasVolume "106" @default.
- W2091240423 isParatext "false" @default.
- W2091240423 isRetracted "false" @default.
- W2091240423 magId "2091240423" @default.
- W2091240423 workType "article" @default.