Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091255108> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2091255108 endingPage "1" @default.
- W2091255108 startingPage "1" @default.
- W2091255108 abstract "Evidence continues to accumulate on the importance of EDHF in vascular homeostasis (Feletou & Vanhoutte, 2001; Golding et al. 2002; Selemidis & Cocks, 2002). A number of physical and chemical stimuli can activate endothelial cells to produce and release vasodilator substances including nitric oxide and prostacyclin. In some blood vessels activation of the endothelium causes hyperpolarization of both endothelium and underlying smooth muscle cells, leading to vasodilatation. The chemical nature of EDHF as well as the contribution of direct transfer of hyperpolarizing current from endothelial cells to smooth muscle cells has been an object of intense investigation ever since the original observation of endothelium-dependent hyperpolarization by Feletou and Vanhoutte in 1988. Potassium ions, cytochrome-P450-derived epoxyeicosatrienoic acids (EETs), and hydrogen peroxide have been proposed as possible EDHFs (Feletou & Vanhoutte, 2001). Spreading of hyperpolarizing current via myoendothelial junctions is another key mechanism of endothelium-dependent hyperpolarization (Feletou & Vanhoutte, 2001). Despite remaining uncertainties regarding the exact nature of EDHF, consensus has been reached that initiation of hyperpolarization is dependent on activation of Ca2+-sensitive K+ (KCa) channels in endothelial cells. Apamin and charybdotoxin selectively inhibit KCa channels. These compounds are valuable pharmacological tools needed for the characterization of the role of EDHF in control of vascular function. The concept of vascular endothelial dysfunction emerged from recognition of the critical role endothelium plays in the regulation of vasomotor function, inflammation, blood coagulation, and angiogenesis. Dysfunctional endothelium favours vasoconstriction, smooth muscle cell proliferation, platelet aggregation, and white blood cell adhesion, and may impair angiogenesis. Numerous studies suggest that loss of the biological activity of nitric oxide and/or its biosynthesis is the central mechanism responsible for endothelial dysfunction (Katusic, 2001). The exact mechanisms responsible for endothelial dysfunction in arteries exposed to chronic hypertension are not completely understood, but may involve chemical antagonism between superoxide anions and nitric oxide and functional antagonism of nitric oxide-mediated vasodilatation due to release of endothelium-derived contracting factor(s) (Katusic & Shepherd, 1991; Vanhoutte, 1996). The study by Sofola et al. (2002), reported in this issue of The Journal of Phsyiology, provides evidence that in hypertension induced by a high salt diet, EDHF may compensate for the loss of nitric oxide and preserve endothelium-dependent relaxations in response to acetylcholine in mesenteric resistance arteries. This observation supports the concept that EDHF may serve as an important compensatory mechanism in arteries exposed to hypertension. More importantly, this observation illustrates that, in diseased arteries, ‘normal’ endothelium-dependent relaxations in response to acetylcholine should not be interpreted as if there is no alteration in endothelial function. Analysis of the mechanism underlying endothelium-dependent relaxation is critical and can unmask endothelial dysfunction due to loss of nitric oxide. Increased vascular resistance is certainly one of the most important mechanisms responsible for the pathogenesis of hypertension. Emerging evidence strongly suggests that the relative contribution of EDHF to endothelial control of vasomotor function increases as the diameter of the blood vessel decreases (Golding et al. 2002). Although the exact role of EDHF in the pathogenesis of hypertension is not completely understood, it appears that localization of EDHF in small resistance arteries is an important mechanism designed to maintain normal vascular resistance. In contrast to nitric oxide, EDHF is not inactivated by oxidative stress. Nitric oxide acts locally whereas EDHF-induced vasodilatation may spread to remote segments of the arterial wall (Selemidis & Cocks, 2002). These characteristics may explain why EDHF can function as a back-up mechanism in vascular diseases associated with oxidative stress and subsequent loss of local homeostatic control mediated by nitric oxide. As acknowledged in the Discussion of the present study by Sofola and colleagues (2002), in mesenteric arteries acetylcholine is not the physiological stimulus for the release of nitric oxide or EDHF. It would certainly be interesting to know whether shear stress-induced vasodilatation is affected by hypertension and whether EDHF may play the same compensatory role as it does in endothelium-dependent relaxations in response to acetylcholine. Furthermore, the precise mechanism responsible for the compensatory effect of EDHF in salt-induced hypertension is unclear. Is it due to up-regulation of EDHF formation and/or release? Does hypertension change reactivity of smooth muscle cells to EDHF? Is there any change in the conductivity of hyperpolarization? Does a high salt diet affect the expression and function of the proteins involved in the formation of gap junctions and the propagation of hyperpolarization? Obviously these questions remain to be answered in future studies. A better understanding of EDHF and its ability to act as a compensatory mechanism may provide the basis for development of new therapeutic approaches to vascular endothelial dysfunction." @default.
- W2091255108 created "2016-06-24" @default.
- W2091255108 creator A5082346434 @default.
- W2091255108 date "2002-08-01" @default.
- W2091255108 modified "2023-10-18" @default.
- W2091255108 title "Back to the salt mines – endothelial dysfunction in Hypertension and compensatory role of endothelium‐derived hyperpolarizing factor (EDHF)" @default.
- W2091255108 cites W133994298 @default.
- W2091255108 cites W1588517271 @default.
- W2091255108 cites W1979591663 @default.
- W2091255108 cites W2021783313 @default.
- W2091255108 cites W2071556811 @default.
- W2091255108 cites W2094871761 @default.
- W2091255108 cites W2107869341 @default.
- W2091255108 cites W2115246611 @default.
- W2091255108 cites W2127209378 @default.
- W2091255108 doi "https://doi.org/10.1113/jphysiol.2002.025478" @default.
- W2091255108 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2290466" @default.
- W2091255108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12181276" @default.
- W2091255108 hasPublicationYear "2002" @default.
- W2091255108 type Work @default.
- W2091255108 sameAs 2091255108 @default.
- W2091255108 citedByCount "10" @default.
- W2091255108 countsByYear W20912551082012 @default.
- W2091255108 countsByYear W20912551082015 @default.
- W2091255108 crossrefType "journal-article" @default.
- W2091255108 hasAuthorship W2091255108A5082346434 @default.
- W2091255108 hasBestOaLocation W20912551082 @default.
- W2091255108 hasConcept C120770815 @default.
- W2091255108 hasConcept C123012128 @default.
- W2091255108 hasConcept C126322002 @default.
- W2091255108 hasConcept C131453863 @default.
- W2091255108 hasConcept C134018914 @default.
- W2091255108 hasConcept C178790620 @default.
- W2091255108 hasConcept C181199279 @default.
- W2091255108 hasConcept C185592680 @default.
- W2091255108 hasConcept C202751555 @default.
- W2091255108 hasConcept C2776919887 @default.
- W2091255108 hasConcept C2776992346 @default.
- W2091255108 hasConcept C2778078955 @default.
- W2091255108 hasConcept C2779395532 @default.
- W2091255108 hasConcept C2779396086 @default.
- W2091255108 hasConcept C2780419564 @default.
- W2091255108 hasConcept C2780733407 @default.
- W2091255108 hasConcept C2781128415 @default.
- W2091255108 hasConcept C2992686903 @default.
- W2091255108 hasConcept C519581460 @default.
- W2091255108 hasConcept C55493867 @default.
- W2091255108 hasConcept C66974803 @default.
- W2091255108 hasConcept C71924100 @default.
- W2091255108 hasConcept C83743174 @default.
- W2091255108 hasConcept C86803240 @default.
- W2091255108 hasConcept C95444343 @default.
- W2091255108 hasConceptScore W2091255108C120770815 @default.
- W2091255108 hasConceptScore W2091255108C123012128 @default.
- W2091255108 hasConceptScore W2091255108C126322002 @default.
- W2091255108 hasConceptScore W2091255108C131453863 @default.
- W2091255108 hasConceptScore W2091255108C134018914 @default.
- W2091255108 hasConceptScore W2091255108C178790620 @default.
- W2091255108 hasConceptScore W2091255108C181199279 @default.
- W2091255108 hasConceptScore W2091255108C185592680 @default.
- W2091255108 hasConceptScore W2091255108C202751555 @default.
- W2091255108 hasConceptScore W2091255108C2776919887 @default.
- W2091255108 hasConceptScore W2091255108C2776992346 @default.
- W2091255108 hasConceptScore W2091255108C2778078955 @default.
- W2091255108 hasConceptScore W2091255108C2779395532 @default.
- W2091255108 hasConceptScore W2091255108C2779396086 @default.
- W2091255108 hasConceptScore W2091255108C2780419564 @default.
- W2091255108 hasConceptScore W2091255108C2780733407 @default.
- W2091255108 hasConceptScore W2091255108C2781128415 @default.
- W2091255108 hasConceptScore W2091255108C2992686903 @default.
- W2091255108 hasConceptScore W2091255108C519581460 @default.
- W2091255108 hasConceptScore W2091255108C55493867 @default.
- W2091255108 hasConceptScore W2091255108C66974803 @default.
- W2091255108 hasConceptScore W2091255108C71924100 @default.
- W2091255108 hasConceptScore W2091255108C83743174 @default.
- W2091255108 hasConceptScore W2091255108C86803240 @default.
- W2091255108 hasConceptScore W2091255108C95444343 @default.
- W2091255108 hasIssue "1" @default.
- W2091255108 hasLocation W20912551081 @default.
- W2091255108 hasLocation W20912551082 @default.
- W2091255108 hasLocation W20912551083 @default.
- W2091255108 hasOpenAccess W2091255108 @default.
- W2091255108 hasPrimaryLocation W20912551081 @default.
- W2091255108 hasRelatedWork W1544527487 @default.
- W2091255108 hasRelatedWork W1684778245 @default.
- W2091255108 hasRelatedWork W1995205781 @default.
- W2091255108 hasRelatedWork W1999592913 @default.
- W2091255108 hasRelatedWork W2017140757 @default.
- W2091255108 hasRelatedWork W2055235783 @default.
- W2091255108 hasRelatedWork W2085367013 @default.
- W2091255108 hasRelatedWork W2091255108 @default.
- W2091255108 hasRelatedWork W2145604116 @default.
- W2091255108 hasRelatedWork W588813213 @default.
- W2091255108 hasVolume "543" @default.
- W2091255108 isParatext "false" @default.
- W2091255108 isRetracted "false" @default.
- W2091255108 magId "2091255108" @default.
- W2091255108 workType "article" @default.