Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091256258> ?p ?o ?g. }
- W2091256258 endingPage "234" @default.
- W2091256258 startingPage "217" @default.
- W2091256258 abstract "Many authors have reported the use of empirical line regression between field target sites and image pixels in order to perform atmospheric correction of multispectral images. However few studies were dedicated to the specific reflectance retrieval for cultivated bare soils from multispectral satellite images, from a large number (≥15) of bare field targets spread over a region. Even fewer were oriented towards additional field targets for validation and uncertainty assessment of reflectance error. This study aimed at assessing ELM validation accuracy and uncertainty for predicting topsoil reflectance over a wide area (221 km2) with contrasting soils and tillage practices using a set of six multispectral images at very high (supermode SPOT5, 2.5 m), high (RapidEye, 6.5 m) and medium (SPOT4, 20 m) spatial resolutions. For each image and each spectral band, linear regression (LR) models were constructed through a series of 1000 bootstrap datasets of training/validation samples generated amongst a total of about 30 field sites used as targets, the reflectance measurements of which were made between −6 days/+7 days around acquisition date. The achieved models had an average coefficient of variation of validation errors of ∼14%, which indicates that the composition of training field sites does influence performance results of ELM. However, according to median LR-models, our approach mostly resulted in accurate predictions with low standard errors of estimation around 1–2% reflectance, validation errors of 2–3% reflectance, low validation bias (<|1|% reflectance). The best results were obtained for SPOT5 and RapidEye images the spatial resolution of which is likely to better match the size of the sampled field sites. The worst results (higher median RMSE values 3.1–4.8%) were yielded for shortwave-infrared bands of SPOT4 images acquired in March: in agricultural areas, images programmed during periods when most field tillage operations have resulted in smooth seedbed conditions (April in this study) are in favour of better performances of soil reflectance prediction. Nevertheless, directional effects appear to mainly and moderately affect the global performance of near-infrared and SWIR bands-models except for oblique viewing images (viewing angle > |20°|). The predictions obtained from median LR-models through per-pixel bootstrapped ELM approach were as accurate as the ATCOR2 predictions with default parameters for the RapidEye image and were slightly more accurate and less biased for the SPOT4 images." @default.
- W2091256258 created "2016-06-24" @default.
- W2091256258 creator A5015336852 @default.
- W2091256258 creator A5021666736 @default.
- W2091256258 creator A5026478020 @default.
- W2091256258 creator A5053130537 @default.
- W2091256258 creator A5056523656 @default.
- W2091256258 creator A5085384988 @default.
- W2091256258 creator A5090816950 @default.
- W2091256258 date "2014-02-01" @default.
- W2091256258 modified "2023-10-16" @default.
- W2091256258 title "Uncertainty of soil reflectance retrieval from SPOT and RapidEye multispectral satellite images using a per-pixel bootstrapped empirical line atmospheric correction over an agricultural region" @default.
- W2091256258 cites W1058221833 @default.
- W2091256258 cites W180166045 @default.
- W2091256258 cites W1978304859 @default.
- W2091256258 cites W1983218333 @default.
- W2091256258 cites W1985117795 @default.
- W2091256258 cites W1985245768 @default.
- W2091256258 cites W1993174891 @default.
- W2091256258 cites W1997671850 @default.
- W2091256258 cites W1998053851 @default.
- W2091256258 cites W2000330483 @default.
- W2091256258 cites W2017859040 @default.
- W2091256258 cites W2018640103 @default.
- W2091256258 cites W2023999813 @default.
- W2091256258 cites W2038211274 @default.
- W2091256258 cites W2039944143 @default.
- W2091256258 cites W2042948856 @default.
- W2091256258 cites W2043359577 @default.
- W2091256258 cites W2044941500 @default.
- W2091256258 cites W2050917502 @default.
- W2091256258 cites W2052903566 @default.
- W2091256258 cites W2057618993 @default.
- W2091256258 cites W2065944190 @default.
- W2091256258 cites W2070754870 @default.
- W2091256258 cites W2071721966 @default.
- W2091256258 cites W2078557491 @default.
- W2091256258 cites W2103766443 @default.
- W2091256258 cites W2104495592 @default.
- W2091256258 cites W2112117950 @default.
- W2091256258 cites W2120397745 @default.
- W2091256258 cites W2125459444 @default.
- W2091256258 cites W2125763679 @default.
- W2091256258 cites W2131589663 @default.
- W2091256258 cites W2134213291 @default.
- W2091256258 cites W2135723070 @default.
- W2091256258 cites W2143777125 @default.
- W2091256258 cites W2151896708 @default.
- W2091256258 cites W2179031038 @default.
- W2091256258 doi "https://doi.org/10.1016/j.jag.2013.07.003" @default.
- W2091256258 hasPublicationYear "2014" @default.
- W2091256258 type Work @default.
- W2091256258 sameAs 2091256258 @default.
- W2091256258 citedByCount "19" @default.
- W2091256258 countsByYear W20912562582013 @default.
- W2091256258 countsByYear W20912562582014 @default.
- W2091256258 countsByYear W20912562582015 @default.
- W2091256258 countsByYear W20912562582016 @default.
- W2091256258 countsByYear W20912562582017 @default.
- W2091256258 countsByYear W20912562582018 @default.
- W2091256258 countsByYear W20912562582019 @default.
- W2091256258 countsByYear W20912562582021 @default.
- W2091256258 countsByYear W20912562582022 @default.
- W2091256258 crossrefType "journal-article" @default.
- W2091256258 hasAuthorship W2091256258A5015336852 @default.
- W2091256258 hasAuthorship W2091256258A5021666736 @default.
- W2091256258 hasAuthorship W2091256258A5026478020 @default.
- W2091256258 hasAuthorship W2091256258A5053130537 @default.
- W2091256258 hasAuthorship W2091256258A5056523656 @default.
- W2091256258 hasAuthorship W2091256258A5085384988 @default.
- W2091256258 hasAuthorship W2091256258A5090816950 @default.
- W2091256258 hasConcept C104541649 @default.
- W2091256258 hasConcept C105795698 @default.
- W2091256258 hasConcept C108597893 @default.
- W2091256258 hasConcept C120665830 @default.
- W2091256258 hasConcept C121332964 @default.
- W2091256258 hasConcept C1276947 @default.
- W2091256258 hasConcept C130066347 @default.
- W2091256258 hasConcept C154945302 @default.
- W2091256258 hasConcept C160633673 @default.
- W2091256258 hasConcept C173163844 @default.
- W2091256258 hasConcept C19269812 @default.
- W2091256258 hasConcept C205372480 @default.
- W2091256258 hasConcept C205649164 @default.
- W2091256258 hasConcept C2775938548 @default.
- W2091256258 hasConcept C2778102629 @default.
- W2091256258 hasConcept C2778329001 @default.
- W2091256258 hasConcept C33923547 @default.
- W2091256258 hasConcept C39432304 @default.
- W2091256258 hasConcept C41008148 @default.
- W2091256258 hasConcept C48921125 @default.
- W2091256258 hasConcept C62649853 @default.
- W2091256258 hasConceptScore W2091256258C104541649 @default.
- W2091256258 hasConceptScore W2091256258C105795698 @default.
- W2091256258 hasConceptScore W2091256258C108597893 @default.
- W2091256258 hasConceptScore W2091256258C120665830 @default.
- W2091256258 hasConceptScore W2091256258C121332964 @default.
- W2091256258 hasConceptScore W2091256258C1276947 @default.