Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091258481> ?p ?o ?g. }
- W2091258481 endingPage "216" @default.
- W2091258481 startingPage "197" @default.
- W2091258481 abstract "Statistical methods for modelling plant species distributions are difficult to evaluate using field data because “truth” is unknown. Artificial data based on explicit theory can be used as “truth”. Statistical models should be capable of recovering “truth” if they are to be useful when applied to field data. Use of artificial data in plant community ecology to evaluate statistical methods is reviewed. Two plant community theoretical models based on the continuum concept are identified for describing species responses, the Swan/ter Braak model (Gaussian symmetric unimodal responses) and the Ellenberg/Minchin model (skewed unimodal responses). Theory regarding both indirect and direct environmental gradients is used to simulate a realistic species/environment data set. The software package COMPAS with a restricted set of options is used to generate two types of data set: (1) direct, where species show typical responses to variables such as radiation and (2) indirect, where variables like aspect and slope which are related to radiation by complex environmental processes. An example of generalised linear models (GLM) and generalised additive models (GAM) applied to the artificial data sets by analysts unaware of truth is presented. The results are evaluated on the following criteria: correct selection of predictors; accurate description of response curves; prediction of abundance; and ecologically rational relationships. The potential impacts of differences in the skills of the analysts are discussed. Both GLM and GAM performed well with Gaussian responses and direct gradient predictors. GAM performed marginally better with the skewed response model and direct predictors. GAM performed consistently better than GLM with the indirect predictors. The main conclusion was that the ecological knowledge and statistical skills of the analysts were more important than the method used." @default.
- W2091258481 created "2016-06-24" @default.
- W2091258481 creator A5039217683 @default.
- W2091258481 creator A5061584656 @default.
- W2091258481 creator A5066306284 @default.
- W2091258481 creator A5080656961 @default.
- W2091258481 creator A5081040046 @default.
- W2091258481 date "2006-11-01" @default.
- W2091258481 modified "2023-10-12" @default.
- W2091258481 title "Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory" @default.
- W2091258481 cites W1531035825 @default.
- W2091258481 cites W1838542636 @default.
- W2091258481 cites W1964837462 @default.
- W2091258481 cites W1969139249 @default.
- W2091258481 cites W1982278596 @default.
- W2091258481 cites W1985414380 @default.
- W2091258481 cites W1987782259 @default.
- W2091258481 cites W1990011205 @default.
- W2091258481 cites W1999659160 @default.
- W2091258481 cites W2010630107 @default.
- W2091258481 cites W2038393238 @default.
- W2091258481 cites W2047895374 @default.
- W2091258481 cites W2053662311 @default.
- W2091258481 cites W2060298585 @default.
- W2091258481 cites W2065568562 @default.
- W2091258481 cites W2080978149 @default.
- W2091258481 cites W2081964130 @default.
- W2091258481 cites W2095240644 @default.
- W2091258481 cites W2100790927 @default.
- W2091258481 cites W2102201073 @default.
- W2091258481 cites W2116394790 @default.
- W2091258481 cites W2120160157 @default.
- W2091258481 cites W2121795775 @default.
- W2091258481 cites W2123128218 @default.
- W2091258481 cites W2124151745 @default.
- W2091258481 cites W2138988968 @default.
- W2091258481 cites W2139330996 @default.
- W2091258481 cites W2139857790 @default.
- W2091258481 cites W2147618390 @default.
- W2091258481 cites W2156319159 @default.
- W2091258481 cites W2160613335 @default.
- W2091258481 cites W2165384723 @default.
- W2091258481 cites W2167239677 @default.
- W2091258481 cites W2167827350 @default.
- W2091258481 cites W2313706987 @default.
- W2091258481 cites W2315149725 @default.
- W2091258481 cites W2321648649 @default.
- W2091258481 cites W4229884027 @default.
- W2091258481 cites W4233761502 @default.
- W2091258481 cites W4234750113 @default.
- W2091258481 cites W4235887661 @default.
- W2091258481 cites W4238100267 @default.
- W2091258481 cites W4240863263 @default.
- W2091258481 cites W4243825911 @default.
- W2091258481 cites W4243871771 @default.
- W2091258481 cites W4249900816 @default.
- W2091258481 cites W4254900611 @default.
- W2091258481 doi "https://doi.org/10.1016/j.ecolmodel.2006.05.023" @default.
- W2091258481 hasPublicationYear "2006" @default.
- W2091258481 type Work @default.
- W2091258481 sameAs 2091258481 @default.
- W2091258481 citedByCount "186" @default.
- W2091258481 countsByYear W20912584812012 @default.
- W2091258481 countsByYear W20912584812013 @default.
- W2091258481 countsByYear W20912584812014 @default.
- W2091258481 countsByYear W20912584812015 @default.
- W2091258481 countsByYear W20912584812016 @default.
- W2091258481 countsByYear W20912584812017 @default.
- W2091258481 countsByYear W20912584812018 @default.
- W2091258481 countsByYear W20912584812019 @default.
- W2091258481 countsByYear W20912584812020 @default.
- W2091258481 countsByYear W20912584812021 @default.
- W2091258481 countsByYear W20912584812022 @default.
- W2091258481 countsByYear W20912584812023 @default.
- W2091258481 crossrefType "journal-article" @default.
- W2091258481 hasAuthorship W2091258481A5039217683 @default.
- W2091258481 hasAuthorship W2091258481A5061584656 @default.
- W2091258481 hasAuthorship W2091258481A5066306284 @default.
- W2091258481 hasAuthorship W2091258481A5080656961 @default.
- W2091258481 hasAuthorship W2091258481A5081040046 @default.
- W2091258481 hasConcept C105795698 @default.
- W2091258481 hasConcept C154945302 @default.
- W2091258481 hasConcept C186060115 @default.
- W2091258481 hasConcept C18903297 @default.
- W2091258481 hasConcept C2985179745 @default.
- W2091258481 hasConcept C33923547 @default.
- W2091258481 hasConcept C41008148 @default.
- W2091258481 hasConcept C86803240 @default.
- W2091258481 hasConceptScore W2091258481C105795698 @default.
- W2091258481 hasConceptScore W2091258481C154945302 @default.
- W2091258481 hasConceptScore W2091258481C186060115 @default.
- W2091258481 hasConceptScore W2091258481C18903297 @default.
- W2091258481 hasConceptScore W2091258481C2985179745 @default.
- W2091258481 hasConceptScore W2091258481C33923547 @default.
- W2091258481 hasConceptScore W2091258481C41008148 @default.
- W2091258481 hasConceptScore W2091258481C86803240 @default.
- W2091258481 hasIssue "2" @default.
- W2091258481 hasLocation W20912584811 @default.