Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091262118> ?p ?o ?g. }
- W2091262118 abstract "Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the big data challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce." @default.
- W2091262118 created "2016-06-24" @default.
- W2091262118 creator A5051162009 @default.
- W2091262118 creator A5060230343 @default.
- W2091262118 creator A5072946826 @default.
- W2091262118 date "2012-11-06" @default.
- W2091262118 modified "2023-09-25" @default.
- W2091262118 title "Towards building a high performance spatial query system for large scale medical imaging data" @default.
- W2091262118 cites W126394981 @default.
- W2091262118 cites W1868886949 @default.
- W2091262118 cites W190927549 @default.
- W2091262118 cites W1989519960 @default.
- W2091262118 cites W1993997820 @default.
- W2091262118 cites W1999427920 @default.
- W2091262118 cites W2025370055 @default.
- W2091262118 cites W2044490410 @default.
- W2091262118 cites W2046144220 @default.
- W2091262118 cites W2046713668 @default.
- W2091262118 cites W2098935637 @default.
- W2091262118 cites W2100013390 @default.
- W2091262118 cites W2103337291 @default.
- W2091262118 cites W2114303224 @default.
- W2091262118 cites W2119400430 @default.
- W2091262118 cites W2139484679 @default.
- W2091262118 cites W2140509629 @default.
- W2091262118 cites W2151369660 @default.
- W2091262118 cites W2152323874 @default.
- W2091262118 cites W2157355837 @default.
- W2091262118 cites W2169628462 @default.
- W2091262118 cites W2169672215 @default.
- W2091262118 cites W2911302472 @default.
- W2091262118 cites W3004538570 @default.
- W2091262118 cites W4247618959 @default.
- W2091262118 doi "https://doi.org/10.1145/2424321.2424361" @default.
- W2091262118 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3909999" @default.
- W2091262118 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24501719" @default.
- W2091262118 hasPublicationYear "2012" @default.
- W2091262118 type Work @default.
- W2091262118 sameAs 2091262118 @default.
- W2091262118 citedByCount "47" @default.
- W2091262118 countsByYear W20912621182013 @default.
- W2091262118 countsByYear W20912621182014 @default.
- W2091262118 countsByYear W20912621182015 @default.
- W2091262118 countsByYear W20912621182016 @default.
- W2091262118 countsByYear W20912621182017 @default.
- W2091262118 countsByYear W20912621182018 @default.
- W2091262118 countsByYear W20912621182019 @default.
- W2091262118 countsByYear W20912621182020 @default.
- W2091262118 countsByYear W20912621182021 @default.
- W2091262118 countsByYear W20912621182022 @default.
- W2091262118 countsByYear W20912621182023 @default.
- W2091262118 crossrefType "proceedings-article" @default.
- W2091262118 hasAuthorship W2091262118A5051162009 @default.
- W2091262118 hasAuthorship W2091262118A5060230343 @default.
- W2091262118 hasAuthorship W2091262118A5072946826 @default.
- W2091262118 hasBestOaLocation W20912621182 @default.
- W2091262118 hasConcept C11413529 @default.
- W2091262118 hasConcept C124101348 @default.
- W2091262118 hasConcept C127313418 @default.
- W2091262118 hasConcept C154945302 @default.
- W2091262118 hasConcept C157692150 @default.
- W2091262118 hasConcept C159620131 @default.
- W2091262118 hasConcept C164120249 @default.
- W2091262118 hasConcept C172722865 @default.
- W2091262118 hasConcept C192939062 @default.
- W2091262118 hasConcept C199360897 @default.
- W2091262118 hasConcept C202444582 @default.
- W2091262118 hasConcept C203689450 @default.
- W2091262118 hasConcept C205649164 @default.
- W2091262118 hasConcept C23123220 @default.
- W2091262118 hasConcept C2522767166 @default.
- W2091262118 hasConcept C2777522853 @default.
- W2091262118 hasConcept C2778692605 @default.
- W2091262118 hasConcept C31601959 @default.
- W2091262118 hasConcept C33923547 @default.
- W2091262118 hasConcept C41008148 @default.
- W2091262118 hasConcept C45374587 @default.
- W2091262118 hasConcept C58640448 @default.
- W2091262118 hasConcept C62649853 @default.
- W2091262118 hasConcept C75684735 @default.
- W2091262118 hasConcept C9652623 @default.
- W2091262118 hasConcept C9770341 @default.
- W2091262118 hasConcept C97854310 @default.
- W2091262118 hasConceptScore W2091262118C11413529 @default.
- W2091262118 hasConceptScore W2091262118C124101348 @default.
- W2091262118 hasConceptScore W2091262118C127313418 @default.
- W2091262118 hasConceptScore W2091262118C154945302 @default.
- W2091262118 hasConceptScore W2091262118C157692150 @default.
- W2091262118 hasConceptScore W2091262118C159620131 @default.
- W2091262118 hasConceptScore W2091262118C164120249 @default.
- W2091262118 hasConceptScore W2091262118C172722865 @default.
- W2091262118 hasConceptScore W2091262118C192939062 @default.
- W2091262118 hasConceptScore W2091262118C199360897 @default.
- W2091262118 hasConceptScore W2091262118C202444582 @default.
- W2091262118 hasConceptScore W2091262118C203689450 @default.
- W2091262118 hasConceptScore W2091262118C205649164 @default.
- W2091262118 hasConceptScore W2091262118C23123220 @default.
- W2091262118 hasConceptScore W2091262118C2522767166 @default.
- W2091262118 hasConceptScore W2091262118C2777522853 @default.
- W2091262118 hasConceptScore W2091262118C2778692605 @default.