Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091268741> ?p ?o ?g. }
- W2091268741 abstract "A subtle relation between quantum Hall physics and the phenomenon of pairing is unveiled. By use of second quantization, we establish a connection between (i) a broad class of rotationally symmetric two-body interactions within the lowest Landau level and (ii) integrable hyperbolic Richardson-Gaudin-type Hamiltonians that arise in $({p}_{x}+i{p}_{y})$ superconductivity. Specifically, we show that general Haldane pseudopotentials (and their sums) can be expressed as a sum of repulsive noncommuting $({p}_{x}+i{p}_{y})$-type pairing Hamiltonians. The determination of the spectrum and individual null spaces of each of these noncommuting Richardson-Gaudin-type Hamiltonians is nontrivial yet is Bethe ansatz solvable. For the Laughlin sequence, it is observed that this problem is frustration free and zero-energy ground states lie in the common null space of all of these noncommuting Hamiltonians. This property allows for the use of a new truncated basis of pairing configurations in which to express Laughlin states at general filling factors. We prove separability of arbitrary Haldane pseudopotentials, providing explicit expressions for their second quantized forms, and further show by explicit construction how to exploit the topological equivalence between different geometries (disk, cylinder, and sphere) sharing the same topological genus number, in the second quantized formalism, through similarity transformations. As an application of the second quantized approach, we establish a ``squeezing principle'' that applies to the zero modes of a general class of Hamiltonians, which includes but is not limited to Haldane pseudopotentials. We also show how one may establish (bounds on) ``incompressible filling factors'' for those Hamiltonians. By invoking properties of symmetric polynomials, we provide explicit second quantized quasihole generators; the generators that we find directly relate to bosonic chiral edge modes and further make aspects of dimensional reduction in the quantum Hall systems precise." @default.
- W2091268741 created "2016-06-24" @default.
- W2091268741 creator A5055804677 @default.
- W2091268741 creator A5077522382 @default.
- W2091268741 creator A5083582317 @default.
- W2091268741 creator A5083751736 @default.
- W2091268741 date "2013-10-08" @default.
- W2091268741 modified "2023-10-15" @default.
- W2091268741 title "Repulsive interactions in quantum Hall systems as a pairing problem" @default.
- W2091268741 cites W110583329 @default.
- W2091268741 cites W1483144429 @default.
- W2091268741 cites W1516847145 @default.
- W2091268741 cites W1961714508 @default.
- W2091268741 cites W1963826472 @default.
- W2091268741 cites W1963997570 @default.
- W2091268741 cites W1964826312 @default.
- W2091268741 cites W1967734875 @default.
- W2091268741 cites W1969128440 @default.
- W2091268741 cites W1980607593 @default.
- W2091268741 cites W1981601835 @default.
- W2091268741 cites W1987681653 @default.
- W2091268741 cites W1991502795 @default.
- W2091268741 cites W1993289500 @default.
- W2091268741 cites W1995680910 @default.
- W2091268741 cites W1997353813 @default.
- W2091268741 cites W1997528522 @default.
- W2091268741 cites W2002248243 @default.
- W2091268741 cites W2005510828 @default.
- W2091268741 cites W2009746226 @default.
- W2091268741 cites W2010617683 @default.
- W2091268741 cites W2016163529 @default.
- W2091268741 cites W2016435819 @default.
- W2091268741 cites W2021017911 @default.
- W2091268741 cites W2021440012 @default.
- W2091268741 cites W2022012433 @default.
- W2091268741 cites W2026657463 @default.
- W2091268741 cites W2027425979 @default.
- W2091268741 cites W2027639122 @default.
- W2091268741 cites W2027938367 @default.
- W2091268741 cites W2028656212 @default.
- W2091268741 cites W2030338940 @default.
- W2091268741 cites W2042072697 @default.
- W2091268741 cites W2047816889 @default.
- W2091268741 cites W2054186641 @default.
- W2091268741 cites W2060799481 @default.
- W2091268741 cites W2060851210 @default.
- W2091268741 cites W2065737793 @default.
- W2091268741 cites W2066247953 @default.
- W2091268741 cites W2079158195 @default.
- W2091268741 cites W2080730937 @default.
- W2091268741 cites W2081449709 @default.
- W2091268741 cites W2092067916 @default.
- W2091268741 cites W2093908921 @default.
- W2091268741 cites W2094760062 @default.
- W2091268741 cites W2104418222 @default.
- W2091268741 cites W2111408625 @default.
- W2091268741 cites W2118180752 @default.
- W2091268741 cites W2124823967 @default.
- W2091268741 cites W2126382229 @default.
- W2091268741 cites W2127036830 @default.
- W2091268741 cites W2135902788 @default.
- W2091268741 cites W2143174693 @default.
- W2091268741 cites W2159478153 @default.
- W2091268741 cites W2169919279 @default.
- W2091268741 cites W2170982821 @default.
- W2091268741 cites W2229047393 @default.
- W2091268741 cites W2498559348 @default.
- W2091268741 cites W2950743229 @default.
- W2091268741 cites W3022271612 @default.
- W2091268741 cites W3022688609 @default.
- W2091268741 cites W3098733076 @default.
- W2091268741 cites W3101704462 @default.
- W2091268741 cites W3123710108 @default.
- W2091268741 cites W4235926202 @default.
- W2091268741 doi "https://doi.org/10.1103/physrevb.88.165303" @default.
- W2091268741 hasPublicationYear "2013" @default.
- W2091268741 type Work @default.
- W2091268741 sameAs 2091268741 @default.
- W2091268741 citedByCount "33" @default.
- W2091268741 countsByYear W20912687412014 @default.
- W2091268741 countsByYear W20912687412015 @default.
- W2091268741 countsByYear W20912687412016 @default.
- W2091268741 countsByYear W20912687412017 @default.
- W2091268741 countsByYear W20912687412018 @default.
- W2091268741 countsByYear W20912687412019 @default.
- W2091268741 countsByYear W20912687412020 @default.
- W2091268741 countsByYear W20912687412021 @default.
- W2091268741 countsByYear W20912687412022 @default.
- W2091268741 countsByYear W20912687412023 @default.
- W2091268741 crossrefType "journal-article" @default.
- W2091268741 hasAuthorship W2091268741A5055804677 @default.
- W2091268741 hasAuthorship W2091268741A5077522382 @default.
- W2091268741 hasAuthorship W2091268741A5083582317 @default.
- W2091268741 hasAuthorship W2091268741A5083751736 @default.
- W2091268741 hasBestOaLocation W20912687412 @default.
- W2091268741 hasConcept C115260700 @default.
- W2091268741 hasConcept C121332964 @default.
- W2091268741 hasConcept C14103023 @default.
- W2091268741 hasConcept C147120987 @default.
- W2091268741 hasConcept C200369452 @default.