Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091275522> ?p ?o ?g. }
- W2091275522 abstract "Reduction of three-dimensional (3D) description of diffusion in a tube of variable cross section to an approximate one-dimensional (1D) description has been studied in detail previously only in tubes of slowly varying diameter. Here we discuss an effective 1D description in the opposite limiting case when the tube diameter changes abruptly, i.e., in a tube composed of any number of cylindrical sections of different diameters. The key step of our approach is an approximate description of the particle transitions between the wide and narrow parts of the tube as trapping by partially absorbing boundaries with appropriately chosen trapping rates. Boundary homogenization is used to determine the trapping rate for transitions from the wide part of the tube to the narrow one. This trapping rate is then used in combination with the condition of detailed balance to find the trapping rate for transitions in the opposite direction, from the narrow part of the tube to the wide one. Comparison with numerical solution of the 3D diffusion equation allows us to test the approximate 1D description and to establish the conditions of its applicability. We find that suggested 1D description works quite well when the wide part of the tube is not too short, whereas the length of the narrow part can be arbitrary. Taking advantage of this description in the problem of escape of diffusing particle from a cylindrical cavity through a cylindrical tunnel we can lift restricting assumptions accepted in earlier theories: We can consider the particle motion in the tunnel and in the cavity on an equal footing, i.e., we can relax the assumption of fast intracavity relaxation used in all earlier theories. As a consequence, the dependence of the escape kinetics on the particle initial position in the system can be analyzed. Moreover, using the 1D description we can analyze the escape kinetics at an arbitrary tunnel radius, whereas all earlier theories are based on the assumption that the tunnel is narrow." @default.
- W2091275522 created "2016-06-24" @default.
- W2091275522 creator A5038736600 @default.
- W2091275522 creator A5039584452 @default.
- W2091275522 creator A5044651983 @default.
- W2091275522 date "2009-12-11" @default.
- W2091275522 modified "2023-09-27" @default.
- W2091275522 title "One-dimensional description of diffusion in a tube of abruptly changing diameter: Boundary homogenization based approach" @default.
- W2091275522 cites W1965773406 @default.
- W2091275522 cites W1973242118 @default.
- W2091275522 cites W1980628655 @default.
- W2091275522 cites W1993285032 @default.
- W2091275522 cites W1995898476 @default.
- W2091275522 cites W2000656519 @default.
- W2091275522 cites W2020445568 @default.
- W2091275522 cites W2020907684 @default.
- W2091275522 cites W2024184910 @default.
- W2091275522 cites W2025205539 @default.
- W2091275522 cites W2027275167 @default.
- W2091275522 cites W2031187783 @default.
- W2091275522 cites W2033019699 @default.
- W2091275522 cites W2035000030 @default.
- W2091275522 cites W2036925840 @default.
- W2091275522 cites W2039752991 @default.
- W2091275522 cites W2043641141 @default.
- W2091275522 cites W2046933804 @default.
- W2091275522 cites W2048212809 @default.
- W2091275522 cites W2055561591 @default.
- W2091275522 cites W2062937938 @default.
- W2091275522 cites W2063625005 @default.
- W2091275522 cites W2066583220 @default.
- W2091275522 cites W2082267050 @default.
- W2091275522 cites W2090727412 @default.
- W2091275522 cites W2090966203 @default.
- W2091275522 cites W2102793626 @default.
- W2091275522 cites W2109889898 @default.
- W2091275522 cites W2110109281 @default.
- W2091275522 cites W2112155250 @default.
- W2091275522 cites W2471521183 @default.
- W2091275522 doi "https://doi.org/10.1063/1.3271998" @default.
- W2091275522 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2802258" @default.
- W2091275522 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20001027" @default.
- W2091275522 hasPublicationYear "2009" @default.
- W2091275522 type Work @default.
- W2091275522 sameAs 2091275522 @default.
- W2091275522 citedByCount "38" @default.
- W2091275522 countsByYear W20912755222012 @default.
- W2091275522 countsByYear W20912755222013 @default.
- W2091275522 countsByYear W20912755222014 @default.
- W2091275522 countsByYear W20912755222015 @default.
- W2091275522 countsByYear W20912755222017 @default.
- W2091275522 countsByYear W20912755222018 @default.
- W2091275522 countsByYear W20912755222021 @default.
- W2091275522 countsByYear W20912755222022 @default.
- W2091275522 countsByYear W20912755222023 @default.
- W2091275522 crossrefType "journal-article" @default.
- W2091275522 hasAuthorship W2091275522A5038736600 @default.
- W2091275522 hasAuthorship W2091275522A5039584452 @default.
- W2091275522 hasAuthorship W2091275522A5044651983 @default.
- W2091275522 hasBestOaLocation W20912755222 @default.
- W2091275522 hasConcept C121332964 @default.
- W2091275522 hasConcept C124101348 @default.
- W2091275522 hasConcept C127413603 @default.
- W2091275522 hasConcept C130217890 @default.
- W2091275522 hasConcept C134306372 @default.
- W2091275522 hasConcept C139002025 @default.
- W2091275522 hasConcept C159985019 @default.
- W2091275522 hasConcept C182310444 @default.
- W2091275522 hasConcept C188198153 @default.
- W2091275522 hasConcept C18903297 @default.
- W2091275522 hasConcept C192562407 @default.
- W2091275522 hasConcept C2777551473 @default.
- W2091275522 hasConcept C2777924906 @default.
- W2091275522 hasConcept C2778722038 @default.
- W2091275522 hasConcept C33923547 @default.
- W2091275522 hasConcept C41008148 @default.
- W2091275522 hasConcept C57879066 @default.
- W2091275522 hasConcept C74650414 @default.
- W2091275522 hasConcept C78519656 @default.
- W2091275522 hasConcept C86803240 @default.
- W2091275522 hasConceptScore W2091275522C121332964 @default.
- W2091275522 hasConceptScore W2091275522C124101348 @default.
- W2091275522 hasConceptScore W2091275522C127413603 @default.
- W2091275522 hasConceptScore W2091275522C130217890 @default.
- W2091275522 hasConceptScore W2091275522C134306372 @default.
- W2091275522 hasConceptScore W2091275522C139002025 @default.
- W2091275522 hasConceptScore W2091275522C159985019 @default.
- W2091275522 hasConceptScore W2091275522C182310444 @default.
- W2091275522 hasConceptScore W2091275522C188198153 @default.
- W2091275522 hasConceptScore W2091275522C18903297 @default.
- W2091275522 hasConceptScore W2091275522C192562407 @default.
- W2091275522 hasConceptScore W2091275522C2777551473 @default.
- W2091275522 hasConceptScore W2091275522C2777924906 @default.
- W2091275522 hasConceptScore W2091275522C2778722038 @default.
- W2091275522 hasConceptScore W2091275522C33923547 @default.
- W2091275522 hasConceptScore W2091275522C41008148 @default.
- W2091275522 hasConceptScore W2091275522C57879066 @default.
- W2091275522 hasConceptScore W2091275522C74650414 @default.
- W2091275522 hasConceptScore W2091275522C78519656 @default.
- W2091275522 hasConceptScore W2091275522C86803240 @default.