Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091275824> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2091275824 endingPage "989" @default.
- W2091275824 startingPage "971" @default.
- W2091275824 abstract "Galerkin approximations to solutions of a Cauchy-Dirichlet problem governed by the generalized porous medium equation <disp-formula content-type=math/mathml> [ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartFraction partial-differential u Over partial-differential t EndFraction minus sigma-summation Underscript i equals 1 Overscript upper N Endscripts StartFraction partial-differential Over partial-differential x Subscript i Baseline EndFraction left-parenthesis StartAbsoluteValue u EndAbsoluteValue Superscript rho minus 2 Baseline StartFraction partial-differential u Over partial-differential x Subscript i Baseline EndFraction right-parenthesis equals f left-parenthesis x comma t right-parenthesis> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi mathvariant=normal>∂<!-- ∂ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=normal>∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>N</mml:mi> </mml:munderover> <mml:mfrac> <mml:mi mathvariant=normal>∂<!-- ∂ --></mml:mi> <mml:mrow> <mml:mi mathvariant=normal>∂<!-- ∂ --></mml:mi> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:mfrac> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mfrac> <mml:mrow> <mml:mi mathvariant=normal>∂<!-- ∂ --></mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=normal>∂<!-- ∂ --></mml:mi> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:mfrac> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>frac {partial u}{partial t}-sum ^N_{i=1}frac partial {partial x_i}(|u|^{rho -2}frac {partial u}{ partial x_i})=f(x,t)</mml:annotation> </mml:semantics> </mml:math> ] </disp-formula> on bounded convex domains are considered. The range of the parameter <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho> <mml:semantics> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:annotation encoding=application/x-tex>rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> includes the fast diffusion case <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=1 greater-than rho greater-than 2> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>1>rho >2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using an Euler finite difference approximation in time, the semi-discrete solution is shown to converge to the exact solution in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript normal infinity Baseline left-parenthesis 0 comma upper T semicolon upper L Superscript rho Baseline left-parenthesis normal upper Omega right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>L^infty (0,T;L^rho (Omega ))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm with an error controlled by <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper O left-parenthesis normal upper Delta t Superscript one fourth Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>O(Delta t^{frac 14})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=1 greater-than rho greater-than 2> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>1>rho >2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper O left-parenthesis normal upper Delta t Superscript StartFraction 1 Over 2 rho EndFraction Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>O(Delta t^{frac 1{2rho }})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2 less-than-or-equal-to rho greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>2le rho >infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For the fully discrete problem, a global convergence rate of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper O left-parenthesis normal upper Delta t Superscript one fourth Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>O(Delta t^{frac 14})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L squared left-parenthesis 0 comma upper T semicolon upper L Superscript rho Baseline left-parenthesis normal upper Omega right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>L^2(0,T;L^rho (Omega ))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm is shown for the range <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartFraction 2 upper N Over upper N plus 1 EndFraction greater-than rho greater-than 2> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfrac> <mml:mo>></mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>frac {2N}{N+1}>rho >2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2 less-than-or-equal-to rho greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>2le rho >infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a rate of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper O left-parenthesis normal upper Delta t Superscript StartFraction 1 Over 2 rho EndFraction Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Δ<!-- Δ --></mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>O(Delta t^{frac 1{2rho }})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is shown in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript rho Baseline left-parenthesis 0 comma upper T semicolon upper L Superscript rho Baseline left-parenthesis normal upper Omega right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo>;</mml:mo> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>Ω<!-- Ω --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>L^rho (0,T;L^rho (Omega ))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norm." @default.
- W2091275824 created "2016-06-24" @default.
- W2091275824 creator A5033372846 @default.
- W2091275824 creator A5065117159 @default.
- W2091275824 date "1999-02-11" @default.
- W2091275824 modified "2023-09-23" @default.
- W2091275824 title "A priori $L^rho$ error estimates for Galerkin approximations to porous medium and fast diffusion equations" @default.
- W2091275824 cites W1866311589 @default.
- W2091275824 cites W1973713639 @default.
- W2091275824 cites W1978551359 @default.
- W2091275824 cites W1978926871 @default.
- W2091275824 cites W1980939071 @default.
- W2091275824 cites W1987599874 @default.
- W2091275824 cites W1997717231 @default.
- W2091275824 cites W2004947070 @default.
- W2091275824 cites W2024406524 @default.
- W2091275824 cites W2043456529 @default.
- W2091275824 cites W2061163580 @default.
- W2091275824 cites W2067092461 @default.
- W2091275824 cites W2070380956 @default.
- W2091275824 cites W2070621570 @default.
- W2091275824 cites W2091258794 @default.
- W2091275824 cites W4233189147 @default.
- W2091275824 cites W4237321204 @default.
- W2091275824 cites W4239638984 @default.
- W2091275824 cites W4242794827 @default.
- W2091275824 cites W4243944599 @default.
- W2091275824 cites W4245007249 @default.
- W2091275824 cites W4254878862 @default.
- W2091275824 cites W644710670 @default.
- W2091275824 doi "https://doi.org/10.1090/s0025-5718-99-01021-2" @default.
- W2091275824 hasPublicationYear "1999" @default.
- W2091275824 type Work @default.
- W2091275824 sameAs 2091275824 @default.
- W2091275824 citedByCount "13" @default.
- W2091275824 countsByYear W20912758242017 @default.
- W2091275824 countsByYear W20912758242018 @default.
- W2091275824 countsByYear W20912758242019 @default.
- W2091275824 countsByYear W20912758242020 @default.
- W2091275824 crossrefType "journal-article" @default.
- W2091275824 hasAuthorship W2091275824A5033372846 @default.
- W2091275824 hasAuthorship W2091275824A5065117159 @default.
- W2091275824 hasBestOaLocation W20912758241 @default.
- W2091275824 hasConcept C11413529 @default.
- W2091275824 hasConcept C154945302 @default.
- W2091275824 hasConcept C33923547 @default.
- W2091275824 hasConcept C41008148 @default.
- W2091275824 hasConceptScore W2091275824C11413529 @default.
- W2091275824 hasConceptScore W2091275824C154945302 @default.
- W2091275824 hasConceptScore W2091275824C33923547 @default.
- W2091275824 hasConceptScore W2091275824C41008148 @default.
- W2091275824 hasIssue "227" @default.
- W2091275824 hasLocation W20912758241 @default.
- W2091275824 hasOpenAccess W2091275824 @default.
- W2091275824 hasPrimaryLocation W20912758241 @default.
- W2091275824 hasRelatedWork W2051487156 @default.
- W2091275824 hasRelatedWork W2052122378 @default.
- W2091275824 hasRelatedWork W2053286651 @default.
- W2091275824 hasRelatedWork W2073681303 @default.
- W2091275824 hasRelatedWork W2317200988 @default.
- W2091275824 hasRelatedWork W2544423928 @default.
- W2091275824 hasRelatedWork W2947381795 @default.
- W2091275824 hasRelatedWork W2181413294 @default.
- W2091275824 hasRelatedWork W2181743346 @default.
- W2091275824 hasRelatedWork W2187401768 @default.
- W2091275824 hasVolume "68" @default.
- W2091275824 isParatext "false" @default.
- W2091275824 isRetracted "false" @default.
- W2091275824 magId "2091275824" @default.
- W2091275824 workType "article" @default.