Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091276317> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2091276317 endingPage "629" @default.
- W2091276317 startingPage "629" @default.
- W2091276317 abstract "To the novice, chaos theory appears at once exotic--with terminology like strange attractor and butterfly effect--and mathematically abstruse. Yet the concepts are finding their way into the social sciences. For example, they have been used in lifespan development (e.g., Thelen, 1989), psychology (e.g., Barton, 1994), and family therapy and research (e.g., Chubb, 1990; Elkaim, 1990; Gottman, 1991, 1993,a, 1993b). Because these ideas are gaining currency, some assessment of their relevance to family systems is appropriate. Does chaos theory offer fresh insights or is it merely a case of new jargon, old problems? COMPLEX DYNAMICAL SYSTEMS A system is a complex of interacting elements that includes not only the-members but also the relationship among them (Bertalanffy, 1968). Some systems are linear in their operation. That is, their action can be predicted by information about their starting point and their rules of operation. Many apparently deterministic systems, however, have two possible forms: regulated and wildly unpredictable (Nicolis & Prigogine, 1989). Relatively recently, a theory of complex dynamical systems (more popularly known as chaos theory), which explores processes in such systems, has emerged. There are two general thrusts to the theory. One branch emphasizes the hidden order that exists within so-called chaotic systems. The other looks at the spontaneous self-organization of systems out of apparent disorder. In this theory, chaos is not used in the popular sense of total randomness. Instead it refers to systems like the weather or the stock market that are complex and unpredictable, but do have some kind of form and structure that is imposed by the nature of the environment (Field & Golubitsky, 1992). In spite of their diversity, these systems share a number of qualities. They operate far from a state of equilibrium. They do not show simple linear cause and effect sequences; rather, they are nonlinear and small causes may produce disproportionately large effects, or none at all. Such systems are sensitive to initial conditions. That is, unless these conditions can be determined with infinite precision, an impossible standard to achieve, the small inaccuracies will multiply so that two apparently similar events will produce widely varying consequences. They are characterized by discontinuous shifts between phases. Once these shifts occur, the system's behavior tends to settle into a particular delimited range. Often these consistencies in behavior appear to come from the system itself; that is, it shows self-organization (Nicolis & Prigogine, 1989). Much of the argument of chaos theory has been developed through complex formulae that may initially overwhelm social scientists who do not have a grounding in mathematics. Some theorists, such as Gottman (1991), have already used key formulae to analyze sequences in family interaction. Yet the mathematical basis need not be a deterrent. Historically, general system theory also had a mathematical basis (Fivaz, 1991); yet most family systems thinkers are quite comfortable using the concepts nonmathematically. If chaos concepts, in their turn, are to be widely adopted, they must be applicable to families either directly or metaphorically. In fact, the process is underway in Elkaim's (1990) use of chaos principles in family therapy and Gottman's (1993b) exploration of the process of marital dissolution. SYSTEMS FAR FROM EQUILIBRIUM One of the key characteristics of complex dynamical systems is that they operate far from equilibrium. In traditional Newtonian physics, when a mechanical system is relatively closed to the environment and does not import additional energy, it eventually runs down and stops. That is, it is entropic; it turns energy into a form that cannot be used for work. Equilibrial systems are exemplified by a pendulum that gradually reduces its swing as it loses energy from the initial push that started it (Bertalanffy, 1968). …" @default.
- W2091276317 created "2016-06-24" @default.
- W2091276317 creator A5037676811 @default.
- W2091276317 date "1995-08-01" @default.
- W2091276317 modified "2023-10-16" @default.
- W2091276317 title "Butterflies and Bifurcations: Can Chaos Theory Contribute to Our Understanding of Family Systems?" @default.
- W2091276317 cites W1511068927 @default.
- W2091276317 cites W1515535773 @default.
- W2091276317 cites W1594337477 @default.
- W2091276317 cites W1595861851 @default.
- W2091276317 cites W1752196365 @default.
- W2091276317 cites W1771155261 @default.
- W2091276317 cites W1977948854 @default.
- W2091276317 cites W1983897270 @default.
- W2091276317 cites W1984686904 @default.
- W2091276317 cites W1991948587 @default.
- W2091276317 cites W1992788167 @default.
- W2091276317 cites W1993247695 @default.
- W2091276317 cites W1994565673 @default.
- W2091276317 cites W2047450675 @default.
- W2091276317 cites W2061126498 @default.
- W2091276317 cites W2077664560 @default.
- W2091276317 cites W2086168317 @default.
- W2091276317 cites W2088419290 @default.
- W2091276317 cites W2096840069 @default.
- W2091276317 cites W2097175447 @default.
- W2091276317 cites W2099069868 @default.
- W2091276317 cites W2101519008 @default.
- W2091276317 cites W2108020239 @default.
- W2091276317 cites W2108821348 @default.
- W2091276317 cites W2121670041 @default.
- W2091276317 cites W2135897145 @default.
- W2091276317 cites W2166510376 @default.
- W2091276317 cites W2282478791 @default.
- W2091276317 cites W2767683363 @default.
- W2091276317 cites W2784741928 @default.
- W2091276317 cites W2976085074 @default.
- W2091276317 cites W3023336206 @default.
- W2091276317 cites W583878160 @default.
- W2091276317 cites W617839742 @default.
- W2091276317 cites W622059825 @default.
- W2091276317 cites W636331028 @default.
- W2091276317 cites W2031398764 @default.
- W2091276317 cites W2472929324 @default.
- W2091276317 doi "https://doi.org/10.2307/353918" @default.
- W2091276317 hasPublicationYear "1995" @default.
- W2091276317 type Work @default.
- W2091276317 sameAs 2091276317 @default.
- W2091276317 citedByCount "45" @default.
- W2091276317 countsByYear W20912763172012 @default.
- W2091276317 countsByYear W20912763172013 @default.
- W2091276317 countsByYear W20912763172014 @default.
- W2091276317 countsByYear W20912763172015 @default.
- W2091276317 countsByYear W20912763172016 @default.
- W2091276317 countsByYear W20912763172017 @default.
- W2091276317 countsByYear W20912763172019 @default.
- W2091276317 countsByYear W20912763172022 @default.
- W2091276317 countsByYear W20912763172023 @default.
- W2091276317 crossrefType "journal-article" @default.
- W2091276317 hasAuthorship W2091276317A5037676811 @default.
- W2091276317 hasConcept C121332964 @default.
- W2091276317 hasConcept C121864883 @default.
- W2091276317 hasConcept C144024400 @default.
- W2091276317 hasConcept C154945302 @default.
- W2091276317 hasConcept C2777052490 @default.
- W2091276317 hasConcept C2779374083 @default.
- W2091276317 hasConcept C38652104 @default.
- W2091276317 hasConcept C41008148 @default.
- W2091276317 hasConcept C92866567 @default.
- W2091276317 hasConceptScore W2091276317C121332964 @default.
- W2091276317 hasConceptScore W2091276317C121864883 @default.
- W2091276317 hasConceptScore W2091276317C144024400 @default.
- W2091276317 hasConceptScore W2091276317C154945302 @default.
- W2091276317 hasConceptScore W2091276317C2777052490 @default.
- W2091276317 hasConceptScore W2091276317C2779374083 @default.
- W2091276317 hasConceptScore W2091276317C38652104 @default.
- W2091276317 hasConceptScore W2091276317C41008148 @default.
- W2091276317 hasConceptScore W2091276317C92866567 @default.
- W2091276317 hasIssue "3" @default.
- W2091276317 hasLocation W20912763171 @default.
- W2091276317 hasOpenAccess W2091276317 @default.
- W2091276317 hasPrimaryLocation W20912763171 @default.
- W2091276317 hasRelatedWork W2086709181 @default.
- W2091276317 hasRelatedWork W2087369611 @default.
- W2091276317 hasRelatedWork W2120724135 @default.
- W2091276317 hasRelatedWork W2350065374 @default.
- W2091276317 hasRelatedWork W2350515275 @default.
- W2091276317 hasRelatedWork W2385251151 @default.
- W2091276317 hasRelatedWork W2385255403 @default.
- W2091276317 hasRelatedWork W3183850587 @default.
- W2091276317 hasRelatedWork W424706335 @default.
- W2091276317 hasRelatedWork W604151628 @default.
- W2091276317 hasVolume "57" @default.
- W2091276317 isParatext "false" @default.
- W2091276317 isRetracted "false" @default.
- W2091276317 magId "2091276317" @default.
- W2091276317 workType "article" @default.