Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091277777> ?p ?o ?g. }
- W2091277777 endingPage "255203" @default.
- W2091277777 startingPage "255203" @default.
- W2091277777 abstract "In this paper, the solution of a fractional diffusion equation with a Hilfer-generalized Riemann–Liouville time fractional derivative is obtained in terms of Mittag–Leffler-type functions and Fox's H-function. The considered equation represents a quite general extension of the classical diffusion (heat conduction) equation. The methods of separation of variables, Laplace transform, and analysis of the Sturm–Liouville problem are used to solve the fractional diffusion equation defined in a bounded domain. By using the Fourier–Laplace transform method, it is shown that the fundamental solution of the fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative defined in the infinite domain can be expressed via Fox's H-function. It is shown that the corresponding solutions of the diffusion equations with time fractional derivative in the Caputo and Riemann–Liouville sense are special cases of those diffusion equations with the Hilfer-generalized Riemann–Liouville time fractional derivative. The asymptotic behaviour of the solutions are found for large values of the spatial variable. The fractional moments of the fundamental solution of the fractional diffusion equation are obtained. The obtained results are relevant in the context of glass relaxation and aquifer problems." @default.
- W2091277777 created "2016-06-24" @default.
- W2091277777 creator A5042369390 @default.
- W2091277777 creator A5044662930 @default.
- W2091277777 creator A5053976837 @default.
- W2091277777 date "2011-05-23" @default.
- W2091277777 modified "2023-10-18" @default.
- W2091277777 title "Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative" @default.
- W2091277777 cites W171286733 @default.
- W2091277777 cites W1967200406 @default.
- W2091277777 cites W1971828127 @default.
- W2091277777 cites W1973950856 @default.
- W2091277777 cites W1976376094 @default.
- W2091277777 cites W1977360274 @default.
- W2091277777 cites W1982261380 @default.
- W2091277777 cites W1998904894 @default.
- W2091277777 cites W2000526322 @default.
- W2091277777 cites W2009354582 @default.
- W2091277777 cites W2009446982 @default.
- W2091277777 cites W2013855261 @default.
- W2091277777 cites W2016585644 @default.
- W2091277777 cites W2016755336 @default.
- W2091277777 cites W2019136471 @default.
- W2091277777 cites W2023248363 @default.
- W2091277777 cites W2027205768 @default.
- W2091277777 cites W2031573489 @default.
- W2091277777 cites W2034352409 @default.
- W2091277777 cites W2038936757 @default.
- W2091277777 cites W2041616689 @default.
- W2091277777 cites W2042492157 @default.
- W2091277777 cites W2045969550 @default.
- W2091277777 cites W2048910962 @default.
- W2091277777 cites W2058946062 @default.
- W2091277777 cites W2068858251 @default.
- W2091277777 cites W2071324059 @default.
- W2091277777 cites W2079905092 @default.
- W2091277777 cites W2081439047 @default.
- W2091277777 cites W2081531908 @default.
- W2091277777 cites W2081925484 @default.
- W2091277777 cites W2084045054 @default.
- W2091277777 cites W2084479653 @default.
- W2091277777 cites W2091464855 @default.
- W2091277777 cites W2091714372 @default.
- W2091277777 cites W2093067381 @default.
- W2091277777 cites W2095581353 @default.
- W2091277777 cites W2106783009 @default.
- W2091277777 cites W2108338926 @default.
- W2091277777 cites W2111271983 @default.
- W2091277777 cites W2115615940 @default.
- W2091277777 cites W2117693140 @default.
- W2091277777 cites W2122992893 @default.
- W2091277777 cites W2144936715 @default.
- W2091277777 cites W2146791489 @default.
- W2091277777 cites W2148983475 @default.
- W2091277777 cites W2157223558 @default.
- W2091277777 cites W2166622832 @default.
- W2091277777 cites W2320778271 @default.
- W2091277777 cites W2391033215 @default.
- W2091277777 cites W2962721443 @default.
- W2091277777 cites W2964270805 @default.
- W2091277777 cites W3097998190 @default.
- W2091277777 cites W3099063792 @default.
- W2091277777 cites W433794350 @default.
- W2091277777 doi "https://doi.org/10.1088/1751-8113/44/25/255203" @default.
- W2091277777 hasPublicationYear "2011" @default.
- W2091277777 type Work @default.
- W2091277777 sameAs 2091277777 @default.
- W2091277777 citedByCount "87" @default.
- W2091277777 countsByYear W20912777772012 @default.
- W2091277777 countsByYear W20912777772013 @default.
- W2091277777 countsByYear W20912777772014 @default.
- W2091277777 countsByYear W20912777772015 @default.
- W2091277777 countsByYear W20912777772016 @default.
- W2091277777 countsByYear W20912777772017 @default.
- W2091277777 countsByYear W20912777772018 @default.
- W2091277777 countsByYear W20912777772019 @default.
- W2091277777 countsByYear W20912777772020 @default.
- W2091277777 countsByYear W20912777772021 @default.
- W2091277777 countsByYear W20912777772022 @default.
- W2091277777 countsByYear W20912777772023 @default.
- W2091277777 crossrefType "journal-article" @default.
- W2091277777 hasAuthorship W2091277777A5042369390 @default.
- W2091277777 hasAuthorship W2091277777A5044662930 @default.
- W2091277777 hasAuthorship W2091277777A5053976837 @default.
- W2091277777 hasConcept C106159729 @default.
- W2091277777 hasConcept C111771559 @default.
- W2091277777 hasConcept C121332964 @default.
- W2091277777 hasConcept C134306372 @default.
- W2091277777 hasConcept C136264566 @default.
- W2091277777 hasConcept C154249771 @default.
- W2091277777 hasConcept C162324750 @default.
- W2091277777 hasConcept C164602753 @default.
- W2091277777 hasConcept C199479865 @default.
- W2091277777 hasConcept C2780378061 @default.
- W2091277777 hasConcept C3017618536 @default.
- W2091277777 hasConcept C33923547 @default.
- W2091277777 hasConcept C37914503 @default.
- W2091277777 hasConcept C41008148 @default.