Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091297291> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2091297291 abstract "Let $G$ be an infinite locally compact abelian group. If $X$ is Banach space, we show that if every bounded Fourier multiplier $T$ on $L^2(G)$ has the property that $Tot Id_X$ is bounded on $L^2(G,X)$ then the Banach space $X$ is isomorphic to a Hilbert space. Moreover, if $1<p<infty$, $pnot=2$, we prove that there exists a bounded Fourier multiplier on $L^p(G)$ which is not completely bounded. Finally, we examine unconditionality from the point of view of Schur multipliers. More precisely, we give several necessary and sufficient conditions to determine if an operator space is completely isomorphic to an operator Hilbert space." @default.
- W2091297291 created "2016-06-24" @default.
- W2091297291 creator A5015704792 @default.
- W2091297291 date "2011-11-14" @default.
- W2091297291 modified "2023-09-26" @default.
- W2091297291 title "Unconditionality, Fourier multipliers and Schur multipliers" @default.
- W2091297291 cites W1480226884 @default.
- W2091297291 cites W1533233993 @default.
- W2091297291 cites W1540752844 @default.
- W2091297291 cites W1552503961 @default.
- W2091297291 cites W1558239788 @default.
- W2091297291 cites W1668764448 @default.
- W2091297291 cites W176204069 @default.
- W2091297291 cites W1871058307 @default.
- W2091297291 cites W1998331678 @default.
- W2091297291 cites W2068867746 @default.
- W2091297291 cites W2073670126 @default.
- W2091297291 cites W2100002907 @default.
- W2091297291 cites W2121153082 @default.
- W2091297291 cites W2224809531 @default.
- W2091297291 cites W2333624702 @default.
- W2091297291 cites W2585618621 @default.
- W2091297291 cites W2964004616 @default.
- W2091297291 cites W296495707 @default.
- W2091297291 cites W3101763681 @default.
- W2091297291 cites W577605427 @default.
- W2091297291 cites W625505059 @default.
- W2091297291 cites W993193140 @default.
- W2091297291 hasPublicationYear "2011" @default.
- W2091297291 type Work @default.
- W2091297291 sameAs 2091297291 @default.
- W2091297291 citedByCount "0" @default.
- W2091297291 crossrefType "posted-content" @default.
- W2091297291 hasAuthorship W2091297291A5015704792 @default.
- W2091297291 hasBestOaLocation W20912972913 @default.
- W2091297291 hasConcept C102519508 @default.
- W2091297291 hasConcept C134306372 @default.
- W2091297291 hasConcept C33923547 @default.
- W2091297291 hasConceptScore W2091297291C102519508 @default.
- W2091297291 hasConceptScore W2091297291C134306372 @default.
- W2091297291 hasConceptScore W2091297291C33923547 @default.
- W2091297291 hasLocation W20912972911 @default.
- W2091297291 hasLocation W20912972912 @default.
- W2091297291 hasLocation W20912972913 @default.
- W2091297291 hasOpenAccess W2091297291 @default.
- W2091297291 hasPrimaryLocation W20912972911 @default.
- W2091297291 hasRelatedWork W1587224694 @default.
- W2091297291 hasRelatedWork W1979597421 @default.
- W2091297291 hasRelatedWork W2007980826 @default.
- W2091297291 hasRelatedWork W2061531152 @default.
- W2091297291 hasRelatedWork W2077600819 @default.
- W2091297291 hasRelatedWork W2142036596 @default.
- W2091297291 hasRelatedWork W2911598644 @default.
- W2091297291 hasRelatedWork W3002753104 @default.
- W2091297291 hasRelatedWork W4225152035 @default.
- W2091297291 hasRelatedWork W4245490552 @default.
- W2091297291 isParatext "false" @default.
- W2091297291 isRetracted "false" @default.
- W2091297291 magId "2091297291" @default.
- W2091297291 workType "article" @default.