Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091308143> ?p ?o ?g. }
- W2091308143 endingPage "138" @default.
- W2091308143 startingPage "129" @default.
- W2091308143 abstract "ABSTRACT Aim Spatial autocorrelation (SAC) in data, i.e. the higher similarity of closer samples, is a common phenomenon in ecology. SAC is starting to be considered in the analysis of species distribution data, and over the last 10 years several studies have incorporated SAC into statistical models (here termed ‘spatial models’). Here, I address the question of whether incorporating SAC affects estimates of model coefficients and inference from statistical models. Methods I review ecological studies that compare spatial and non‐spatial models. Results In all cases coefficient estimates for environmental correlates of species distributions were affected by SAC, leading to a mis‐estimation of on average c . 25%. Model fit was also improved by incorporating SAC. Main conclusions These biased estimates and incorrect model specifications have implications for predicting species occurrences under changing environmental conditions. Spatial models are therefore required to estimate correctly the effects of environmental drivers on species present distributions, for a statistically unbiased identification of the drivers of distribution, and hence for more accurate forecasts of future distributions." @default.
- W2091308143 created "2016-06-24" @default.
- W2091308143 creator A5075919156 @default.
- W2091308143 date "2007-02-19" @default.
- W2091308143 modified "2023-10-11" @default.
- W2091308143 title "Effects of incorporating spatial autocorrelation into the analysis of species distribution data" @default.
- W2091308143 cites W1766029576 @default.
- W2091308143 cites W1838542636 @default.
- W2091308143 cites W1866866852 @default.
- W2091308143 cites W1940882629 @default.
- W2091308143 cites W1957730211 @default.
- W2091308143 cites W1976553079 @default.
- W2091308143 cites W1994266226 @default.
- W2091308143 cites W1996420549 @default.
- W2091308143 cites W1998843668 @default.
- W2091308143 cites W1999435495 @default.
- W2091308143 cites W2000297055 @default.
- W2091308143 cites W2004014822 @default.
- W2091308143 cites W2006941055 @default.
- W2091308143 cites W2010126995 @default.
- W2091308143 cites W2020088870 @default.
- W2091308143 cites W2028226037 @default.
- W2091308143 cites W2029590433 @default.
- W2091308143 cites W2037314599 @default.
- W2091308143 cites W2039598396 @default.
- W2091308143 cites W2042619625 @default.
- W2091308143 cites W2046515122 @default.
- W2091308143 cites W2052834352 @default.
- W2091308143 cites W2053720314 @default.
- W2091308143 cites W2054362344 @default.
- W2091308143 cites W2059215788 @default.
- W2091308143 cites W2067832185 @default.
- W2091308143 cites W2070190147 @default.
- W2091308143 cites W2071999628 @default.
- W2091308143 cites W2072401473 @default.
- W2091308143 cites W2073098454 @default.
- W2091308143 cites W2078783610 @default.
- W2091308143 cites W2085009195 @default.
- W2091308143 cites W2089792340 @default.
- W2091308143 cites W2094367650 @default.
- W2091308143 cites W2095584325 @default.
- W2091308143 cites W2101299555 @default.
- W2091308143 cites W2101968928 @default.
- W2091308143 cites W2111738734 @default.
- W2091308143 cites W2111982591 @default.
- W2091308143 cites W2112315008 @default.
- W2091308143 cites W2118072459 @default.
- W2091308143 cites W2122680804 @default.
- W2091308143 cites W2123337039 @default.
- W2091308143 cites W2124151745 @default.
- W2091308143 cites W2132717587 @default.
- W2091308143 cites W2135224306 @default.
- W2091308143 cites W2139156166 @default.
- W2091308143 cites W2140587197 @default.
- W2091308143 cites W2141491613 @default.
- W2091308143 cites W2146714472 @default.
- W2091308143 cites W2148049172 @default.
- W2091308143 cites W2149991176 @default.
- W2091308143 cites W2152503279 @default.
- W2091308143 cites W2152888317 @default.
- W2091308143 cites W2154286323 @default.
- W2091308143 cites W2155475871 @default.
- W2091308143 cites W2156423060 @default.
- W2091308143 cites W2159294087 @default.
- W2091308143 cites W2161206953 @default.
- W2091308143 cites W2162349018 @default.
- W2091308143 cites W2167555712 @default.
- W2091308143 cites W2169806208 @default.
- W2091308143 cites W2170085373 @default.
- W2091308143 cites W228375214 @default.
- W2091308143 cites W2315978962 @default.
- W2091308143 cites W2332201873 @default.
- W2091308143 cites W2496675188 @default.
- W2091308143 cites W2542332359 @default.
- W2091308143 cites W2543552965 @default.
- W2091308143 cites W2574495021 @default.
- W2091308143 cites W4211001371 @default.
- W2091308143 cites W4211131047 @default.
- W2091308143 doi "https://doi.org/10.1111/j.1466-8238.2006.00279.x" @default.
- W2091308143 hasPublicationYear "2007" @default.
- W2091308143 type Work @default.
- W2091308143 sameAs 2091308143 @default.
- W2091308143 citedByCount "518" @default.
- W2091308143 countsByYear W20913081432012 @default.
- W2091308143 countsByYear W20913081432013 @default.
- W2091308143 countsByYear W20913081432014 @default.
- W2091308143 countsByYear W20913081432015 @default.
- W2091308143 countsByYear W20913081432016 @default.
- W2091308143 countsByYear W20913081432017 @default.
- W2091308143 countsByYear W20913081432018 @default.
- W2091308143 countsByYear W20913081432019 @default.
- W2091308143 countsByYear W20913081432020 @default.
- W2091308143 countsByYear W20913081432021 @default.
- W2091308143 countsByYear W20913081432022 @default.
- W2091308143 countsByYear W20913081432023 @default.
- W2091308143 crossrefType "journal-article" @default.
- W2091308143 hasAuthorship W2091308143A5075919156 @default.
- W2091308143 hasConcept C103278499 @default.