Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091403826> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2091403826 endingPage "1530" @default.
- W2091403826 startingPage "1520" @default.
- W2091403826 abstract "Recently, we used an effective spin concept to expound the analogy between spin-based quantum information processing and phase coherent charge transport through an array of elastic scatterers. Here, we extend that analogy by calculating an effective Shannon entropy for such an array and examining its various properties. For single-moded transport, the Shannon entropy is given by Hbin(|t|2)=−|t|2log2|t|2−|r|2log2|r|2, where |t|2 and |r|2 are the transmission and reflection probabilities through the array of scatterers. A lower bound for Hbin(|t|2) is found starting with the entropic quantum uncertainty principle. An important result is that although evanescent channels (modes) have |t|2=1−|r|2→0, so that their own contribution to Hbin(|t|2)→0, they nevertheless have a profound influence on the total Hbin(|t|2) of the array and its associated signal-to-noise ratio (SNR) since they renormalize the transmission probabilities of the propagating modes. This is reminiscent of the well-known fact that evanescent modes influence the conductance of a structure by renormalizing the transmission probabilities of the propagating modes. The numerical values of Hbin(|t|2) and its SNR are strongly sensitive to the nature of the elastic scatterers, i.e., whether they are attractive (negative potential), repulsive (positive potential), or a combination of both. In samples with repulsive scatterers, the SNR can be tuned over a wide range by applying a potential through a gate to change the scattering potentials from repulsive to attractive by moving their energy levels with respect to the quasi-Fermi level in the sample. We also found that the mean free path of an electron traversing a random array of elastic scatterers is the length scale at which the sum of the cross-correlation coefficients of the effective spin components reaches a minimum. At that point, the sum of the effective Heisenberg and Zeeman Hamiltonians associated with effective spins describing the propagating channels, reaches a minimum. Hence the mean free path can be viewed as an order parameter for a phase transition." @default.
- W2091403826 created "2016-06-24" @default.
- W2091403826 creator A5009822992 @default.
- W2091403826 creator A5037091544 @default.
- W2091403826 creator A5047268098 @default.
- W2091403826 creator A5060734840 @default.
- W2091403826 creator A5073168048 @default.
- W2091403826 date "2010-03-01" @default.
- W2091403826 modified "2023-09-27" @default.
- W2091403826 title "Properties of the Shannon entropy of arrays of elastic scatterers" @default.
- W2091403826 cites W1507437630 @default.
- W2091403826 cites W1513832099 @default.
- W2091403826 cites W1631356911 @default.
- W2091403826 cites W1969672675 @default.
- W2091403826 cites W1981758149 @default.
- W2091403826 cites W2013937943 @default.
- W2091403826 cites W2025835107 @default.
- W2091403826 cites W2033276357 @default.
- W2091403826 cites W2040570147 @default.
- W2091403826 cites W2043740301 @default.
- W2091403826 cites W2058585669 @default.
- W2091403826 cites W2059191928 @default.
- W2091403826 cites W2069890908 @default.
- W2091403826 cites W2075529457 @default.
- W2091403826 cites W2078709447 @default.
- W2091403826 cites W2122983440 @default.
- W2091403826 cites W2950356791 @default.
- W2091403826 doi "https://doi.org/10.1016/j.physe.2009.12.024" @default.
- W2091403826 hasPublicationYear "2010" @default.
- W2091403826 type Work @default.
- W2091403826 sameAs 2091403826 @default.
- W2091403826 citedByCount "2" @default.
- W2091403826 countsByYear W20914038262012 @default.
- W2091403826 countsByYear W20914038262018 @default.
- W2091403826 crossrefType "journal-article" @default.
- W2091403826 hasAuthorship W2091403826A5009822992 @default.
- W2091403826 hasAuthorship W2091403826A5037091544 @default.
- W2091403826 hasAuthorship W2091403826A5047268098 @default.
- W2091403826 hasAuthorship W2091403826A5060734840 @default.
- W2091403826 hasAuthorship W2091403826A5073168048 @default.
- W2091403826 hasConcept C106301342 @default.
- W2091403826 hasConcept C121332964 @default.
- W2091403826 hasConcept C121864883 @default.
- W2091403826 hasConcept C191486275 @default.
- W2091403826 hasConcept C62520636 @default.
- W2091403826 hasConcept C84114770 @default.
- W2091403826 hasConceptScore W2091403826C106301342 @default.
- W2091403826 hasConceptScore W2091403826C121332964 @default.
- W2091403826 hasConceptScore W2091403826C121864883 @default.
- W2091403826 hasConceptScore W2091403826C191486275 @default.
- W2091403826 hasConceptScore W2091403826C62520636 @default.
- W2091403826 hasConceptScore W2091403826C84114770 @default.
- W2091403826 hasIssue "5" @default.
- W2091403826 hasLocation W20914038261 @default.
- W2091403826 hasOpenAccess W2091403826 @default.
- W2091403826 hasPrimaryLocation W20914038261 @default.
- W2091403826 hasRelatedWork W1975516339 @default.
- W2091403826 hasRelatedWork W1984247723 @default.
- W2091403826 hasRelatedWork W2042832384 @default.
- W2091403826 hasRelatedWork W2053331982 @default.
- W2091403826 hasRelatedWork W2059251435 @default.
- W2091403826 hasRelatedWork W2089311698 @default.
- W2091403826 hasRelatedWork W2091463449 @default.
- W2091403826 hasRelatedWork W2762480020 @default.
- W2091403826 hasRelatedWork W2782882015 @default.
- W2091403826 hasRelatedWork W1964036119 @default.
- W2091403826 hasVolume "42" @default.
- W2091403826 isParatext "false" @default.
- W2091403826 isRetracted "false" @default.
- W2091403826 magId "2091403826" @default.
- W2091403826 workType "article" @default.