Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091422232> ?p ?o ?g. }
- W2091422232 endingPage "160" @default.
- W2091422232 startingPage "151" @default.
- W2091422232 abstract "The importance of Earth's low sloping areas in regard to global erosion and sediment fluxes has been widely and vigorously debated. It is a crucial area of research to elucidate geologically meaningful rates of land-surface change and thus the speed of element cycling on Earth. However, there are large portions of Earth where erosion rates have not been well or extensively measured, for example, the tropical lowlands. The Cuiabana lowlands are an extensive low-altitude and low-relief dissected metamorphic terrain situated in the Upper Paraguay river basin, central–west Brazil. Besides exposures of highly variable dissected metamorphic rocks, flat residual lateritic caps related to a Late Cenozoic planation surface dominate interfluves of the Cuiabana lowlands. The timescale over which the lowlands evolved and the planation surface developed, and the rate at which they have been modified by erosion, are poorly known. Here, we present measurements of in situ produced cosmogenic 10Be in outcropping metamorphic bedrock and clastic–lateritic caps to quantify rates of erosion of the surface and associated landforms in order to better understand the Quaternary landscape evolution of these lowlands. Overall, slow erosion rates (mean 10 m/Ma) suggest a stable tectonic environment in these lowlands. Erosion rates vary widely between different lithologies (range 0.57 to 28.3 m/Ma) consistent with differential erosion driving regional landform evolution. The lowest erosion rates are associated with the low-relief area (irregular plains), where clastic–laterite (mean 0.67 m/Ma) and quartzite (mean 2.6 m/Ma) crop out, whereas the highest erosion rates are associated with dissection of residual hills, dominated by metasandstone (mean 11.6 m/Ma) and phyllite (mean 27.6 m/Ma). These data imply that the Cuiabana lowland is comprised of two dominant landform sets with distinct and different dynamics. Because the planation surface (mostly lowlands) is lowering and losing mass more slowly than associated residual hills, regional relief is decreasing over time and the landscape is not in steady state. The extremely slow erosion rates of the clastic–laterite are similar to the slowest outcrop erosion rates reported worldwide. These slow rates are due to the material's properties and resistance, being comprised of quartzite fragments cemented by an iron-rich crust, and reflecting long-term weathering with iron chemical precipitation and ferricrete formation, at least since the Middle Pleistocene. The lateritic caprock appears to be a key factor maintaining hilltop summits of the planation surface over long timescales." @default.
- W2091422232 created "2016-06-24" @default.
- W2091422232 creator A5009085965 @default.
- W2091422232 creator A5024778718 @default.
- W2091422232 creator A5027279285 @default.
- W2091422232 creator A5028388575 @default.
- W2091422232 creator A5030416523 @default.
- W2091422232 creator A5065669012 @default.
- W2091422232 date "2015-04-01" @default.
- W2091422232 modified "2023-10-16" @default.
- W2091422232 title "Erosion rates and landscape evolution of the lowlands of the Upper Paraguay river basin (Brazil) from cosmogenic 10Be" @default.
- W2091422232 cites W1901891127 @default.
- W2091422232 cites W1969905436 @default.
- W2091422232 cites W1970870226 @default.
- W2091422232 cites W1975350041 @default.
- W2091422232 cites W1976207761 @default.
- W2091422232 cites W1976682094 @default.
- W2091422232 cites W1976713510 @default.
- W2091422232 cites W1977985298 @default.
- W2091422232 cites W1985076527 @default.
- W2091422232 cites W1988113497 @default.
- W2091422232 cites W1990613401 @default.
- W2091422232 cites W2000043936 @default.
- W2091422232 cites W2002473398 @default.
- W2091422232 cites W2004238342 @default.
- W2091422232 cites W2005035365 @default.
- W2091422232 cites W2008480788 @default.
- W2091422232 cites W2009425598 @default.
- W2091422232 cites W2009575187 @default.
- W2091422232 cites W2024485262 @default.
- W2091422232 cites W2028473240 @default.
- W2091422232 cites W2041675206 @default.
- W2091422232 cites W2042003303 @default.
- W2091422232 cites W2046648880 @default.
- W2091422232 cites W2047195451 @default.
- W2091422232 cites W2047321869 @default.
- W2091422232 cites W2048470417 @default.
- W2091422232 cites W2050693654 @default.
- W2091422232 cites W2057016276 @default.
- W2091422232 cites W2081017624 @default.
- W2091422232 cites W2081409262 @default.
- W2091422232 cites W2082708433 @default.
- W2091422232 cites W2084177288 @default.
- W2091422232 cites W2090004785 @default.
- W2091422232 cites W2092575329 @default.
- W2091422232 cites W2100717519 @default.
- W2091422232 cites W2103109663 @default.
- W2091422232 cites W2111996152 @default.
- W2091422232 cites W2113643008 @default.
- W2091422232 cites W2113828320 @default.
- W2091422232 cites W2126427530 @default.
- W2091422232 cites W2127478770 @default.
- W2091422232 cites W2131222148 @default.
- W2091422232 cites W2139276753 @default.
- W2091422232 cites W2147735595 @default.
- W2091422232 cites W2148402725 @default.
- W2091422232 cites W2149751861 @default.
- W2091422232 cites W2153063853 @default.
- W2091422232 cites W2157432009 @default.
- W2091422232 cites W2157799222 @default.
- W2091422232 cites W2158702642 @default.
- W2091422232 cites W2161176006 @default.
- W2091422232 cites W2164018549 @default.
- W2091422232 cites W2171466305 @default.
- W2091422232 cites W2171500553 @default.
- W2091422232 cites W2345699550 @default.
- W2091422232 doi "https://doi.org/10.1016/j.geomorph.2015.01.016" @default.
- W2091422232 hasPublicationYear "2015" @default.
- W2091422232 type Work @default.
- W2091422232 sameAs 2091422232 @default.
- W2091422232 citedByCount "16" @default.
- W2091422232 countsByYear W20914222322015 @default.
- W2091422232 countsByYear W20914222322016 @default.
- W2091422232 countsByYear W20914222322017 @default.
- W2091422232 countsByYear W20914222322018 @default.
- W2091422232 countsByYear W20914222322019 @default.
- W2091422232 countsByYear W20914222322021 @default.
- W2091422232 countsByYear W20914222322022 @default.
- W2091422232 countsByYear W20914222322023 @default.
- W2091422232 crossrefType "journal-article" @default.
- W2091422232 hasAuthorship W2091422232A5009085965 @default.
- W2091422232 hasAuthorship W2091422232A5024778718 @default.
- W2091422232 hasAuthorship W2091422232A5027279285 @default.
- W2091422232 hasAuthorship W2091422232A5028388575 @default.
- W2091422232 hasAuthorship W2091422232A5030416523 @default.
- W2091422232 hasAuthorship W2091422232A5065669012 @default.
- W2091422232 hasConcept C100970517 @default.
- W2091422232 hasConcept C108497213 @default.
- W2091422232 hasConcept C109007969 @default.
- W2091422232 hasConcept C112959462 @default.
- W2091422232 hasConcept C114793014 @default.
- W2091422232 hasConcept C122792734 @default.
- W2091422232 hasConcept C123157820 @default.
- W2091422232 hasConcept C127313418 @default.
- W2091422232 hasConcept C137527640 @default.
- W2091422232 hasConcept C138170599 @default.
- W2091422232 hasConcept C151730666 @default.
- W2091422232 hasConcept C169212394 @default.