Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091546400> ?p ?o ?g. }
- W2091546400 endingPage "35" @default.
- W2091546400 startingPage "23" @default.
- W2091546400 abstract "Abstract Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical consistency between point clouds and stereo images. Finally, an over-segmentation based graph cut optimization is carried out, taking into account the color, depth and class information to compute the changed area in the image space. The proposed method is invariant to light changes, robust to small co-registration errors between images and point clouds, and can be applied straightforwardly to 3D polyhedral models. This method can be used for 3D street data updating, city infrastructure management and damage monitoring in complex urban scenes." @default.
- W2091546400 created "2016-06-24" @default.
- W2091546400 creator A5017812815 @default.
- W2091546400 creator A5065425437 @default.
- W2091546400 date "2014-04-01" @default.
- W2091546400 modified "2023-09-25" @default.
- W2091546400 title "3D change detection at street level using mobile laser scanning point clouds and terrestrial images" @default.
- W2091546400 cites W1533955188 @default.
- W2091546400 cites W1807337004 @default.
- W2091546400 cites W1983777936 @default.
- W2091546400 cites W1990724346 @default.
- W2091546400 cites W1993725860 @default.
- W2091546400 cites W2008683230 @default.
- W2091546400 cites W2013711804 @default.
- W2091546400 cites W2031611300 @default.
- W2091546400 cites W2034678108 @default.
- W2091546400 cites W2041998102 @default.
- W2091546400 cites W2042806874 @default.
- W2091546400 cites W2090426641 @default.
- W2091546400 cites W2097838991 @default.
- W2091546400 cites W2098079560 @default.
- W2091546400 cites W2113137767 @default.
- W2091546400 cites W2116546169 @default.
- W2091546400 cites W2118246710 @default.
- W2091546400 cites W2127371723 @default.
- W2091546400 cites W2134962551 @default.
- W2091546400 cites W2147899407 @default.
- W2091546400 cites W2151992422 @default.
- W2091546400 cites W2153633422 @default.
- W2091546400 cites W2157026765 @default.
- W2091546400 cites W2157364958 @default.
- W2091546400 cites W2158082190 @default.
- W2091546400 cites W2167746770 @default.
- W2091546400 cites W2170140722 @default.
- W2091546400 cites W2548197316 @default.
- W2091546400 cites W2795540471 @default.
- W2091546400 cites W4252249194 @default.
- W2091546400 doi "https://doi.org/10.1016/j.isprsjprs.2014.01.006" @default.
- W2091546400 hasPublicationYear "2014" @default.
- W2091546400 type Work @default.
- W2091546400 sameAs 2091546400 @default.
- W2091546400 citedByCount "84" @default.
- W2091546400 countsByYear W20915464002014 @default.
- W2091546400 countsByYear W20915464002015 @default.
- W2091546400 countsByYear W20915464002016 @default.
- W2091546400 countsByYear W20915464002017 @default.
- W2091546400 countsByYear W20915464002018 @default.
- W2091546400 countsByYear W20915464002019 @default.
- W2091546400 countsByYear W20915464002020 @default.
- W2091546400 countsByYear W20915464002021 @default.
- W2091546400 countsByYear W20915464002022 @default.
- W2091546400 countsByYear W20915464002023 @default.
- W2091546400 crossrefType "journal-article" @default.
- W2091546400 hasAuthorship W2091546400A5017812815 @default.
- W2091546400 hasAuthorship W2091546400A5065425437 @default.
- W2091546400 hasConcept C120665830 @default.
- W2091546400 hasConcept C121332964 @default.
- W2091546400 hasConcept C121684516 @default.
- W2091546400 hasConcept C131979681 @default.
- W2091546400 hasConcept C141349535 @default.
- W2091546400 hasConcept C203595873 @default.
- W2091546400 hasConcept C205649164 @default.
- W2091546400 hasConcept C2524010 @default.
- W2091546400 hasConcept C2776821279 @default.
- W2091546400 hasConcept C28719098 @default.
- W2091546400 hasConcept C31972630 @default.
- W2091546400 hasConcept C33923547 @default.
- W2091546400 hasConcept C39432304 @default.
- W2091546400 hasConcept C41008148 @default.
- W2091546400 hasConcept C51399673 @default.
- W2091546400 hasConcept C520434653 @default.
- W2091546400 hasConcept C62649853 @default.
- W2091546400 hasConceptScore W2091546400C120665830 @default.
- W2091546400 hasConceptScore W2091546400C121332964 @default.
- W2091546400 hasConceptScore W2091546400C121684516 @default.
- W2091546400 hasConceptScore W2091546400C131979681 @default.
- W2091546400 hasConceptScore W2091546400C141349535 @default.
- W2091546400 hasConceptScore W2091546400C203595873 @default.
- W2091546400 hasConceptScore W2091546400C205649164 @default.
- W2091546400 hasConceptScore W2091546400C2524010 @default.
- W2091546400 hasConceptScore W2091546400C2776821279 @default.
- W2091546400 hasConceptScore W2091546400C28719098 @default.
- W2091546400 hasConceptScore W2091546400C31972630 @default.
- W2091546400 hasConceptScore W2091546400C33923547 @default.
- W2091546400 hasConceptScore W2091546400C39432304 @default.
- W2091546400 hasConceptScore W2091546400C41008148 @default.
- W2091546400 hasConceptScore W2091546400C51399673 @default.
- W2091546400 hasConceptScore W2091546400C520434653 @default.
- W2091546400 hasConceptScore W2091546400C62649853 @default.
- W2091546400 hasLocation W20915464001 @default.
- W2091546400 hasOpenAccess W2091546400 @default.
- W2091546400 hasPrimaryLocation W20915464001 @default.
- W2091546400 hasRelatedWork W1557295345 @default.
- W2091546400 hasRelatedWork W1882707605 @default.
- W2091546400 hasRelatedWork W194879647 @default.
- W2091546400 hasRelatedWork W2194160504 @default.
- W2091546400 hasRelatedWork W2335177719 @default.
- W2091546400 hasRelatedWork W2731990012 @default.