Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091569795> ?p ?o ?g. }
- W2091569795 endingPage "9049" @default.
- W2091569795 startingPage "9039" @default.
- W2091569795 abstract "A recently developed strategy for utilizing surface-enhanced Raman scattering (SERS) to obtain uniquely detailed vibrational information for a myriad of organic (and other) adsorbates on transition metals in electrochemical and other ambient environments is illustrated for benzene and a pair of monosubstituted benzenes, toluene and benzonitrile, on palladium and rhodium films in aqueous solution. The transition-metal layers, formed by constant-current deposition onto SERS-active gold substrates, can be sufficiently thin (3−5 monolayers, ML) so to yield near-optimal Raman scattering intensities, yet are essentially devoid of exposed “pinhole” sites, thereby eliminating spectral interferences from adsorption onto gold. Benzene was selected in view of the detailed vibrational information also available for this archetypical organic chemisorbate on transition metals in ultrahigh vacuum (UHV) by means of electron energy loss spectroscopy (EELS). Comparison of the spectral information obtained by SERS and EELS provides an instructive assessment of how the different properties, including surface-selection rules, characterizing these related energy-loss spectroscopic methods influence the vibrational information content. The “dynamic polarizability” surface- selection rules followed by SERS enable most adsorbate normal modes to readily be detected and identified, aided by H/D isotopic substitution, even for such flat oriented adsorbates. The relative Raman band intensities combined with adsorption-induced frequency shifts also provide a reliable guide to chemisorbate structure and surface bonding. These SERS characteristics compare favorably with corresponding EELS data: while both techniques provide detailed vibrational information for “flat” oriented aromatic molecules, the former method allows at least as complete a spectroscopic analysis to be undertaken, yet is uniquely applicable to transition metal−nonvacuum interfaces. Toluene chemisorption on palladium yields rich SER spectra that also signal a “flat” aromatic orientation via metal ring π interactions, again similar to the bonding deduced by EELS at related metal−UHV interfaces. Benzonitrile, however, yields markedly different SER spectral features compared with toluene that are indicative of chemisorption primarily via the nitrile substituent rather than the aromatic ring. This binding geometry contrasts the flat adsorbate orientation deduced by EELS on copper and gold. The difference is probably due to the influence of solvent (and possibly also interfacial charge) in the electrochemical environment. While the SERS band intensities are attenuated progressively for increasing transition-metal thickness, this “overlayer-film” strategy is viable even for markedly thicker (∼5−10 nm) layers. The likely broad-based utility of the approach for in-situ surface vibrational characterization of such catalytically significant interfaces is considered in light of these findings." @default.
- W2091569795 created "2016-06-24" @default.
- W2091569795 creator A5021427890 @default.
- W2091569795 creator A5047318269 @default.
- W2091569795 creator A5082437517 @default.
- W2091569795 creator A5088559129 @default.
- W2091569795 date "1998-10-21" @default.
- W2091569795 modified "2023-10-01" @default.
- W2091569795 title "Surface-Enhanced Raman Scattering as a Ubiquitous Vibrational Probe of Transition-Metal Interfaces: Benzene and Related Chemisorbates on Palladium and Rhodium in Aqueous Solution" @default.
- W2091569795 cites W1510750170 @default.
- W2091569795 cites W1670279692 @default.
- W2091569795 cites W1964550336 @default.
- W2091569795 cites W1970762409 @default.
- W2091569795 cites W1974880136 @default.
- W2091569795 cites W1978464097 @default.
- W2091569795 cites W1982305895 @default.
- W2091569795 cites W1984230162 @default.
- W2091569795 cites W1985021632 @default.
- W2091569795 cites W1986288882 @default.
- W2091569795 cites W1990589407 @default.
- W2091569795 cites W1990945171 @default.
- W2091569795 cites W1997746610 @default.
- W2091569795 cites W1998534594 @default.
- W2091569795 cites W1999237100 @default.
- W2091569795 cites W2002453849 @default.
- W2091569795 cites W2002796916 @default.
- W2091569795 cites W2003297414 @default.
- W2091569795 cites W2003522765 @default.
- W2091569795 cites W2007467377 @default.
- W2091569795 cites W2028566271 @default.
- W2091569795 cites W2028620083 @default.
- W2091569795 cites W2033947280 @default.
- W2091569795 cites W2035318917 @default.
- W2091569795 cites W2036108754 @default.
- W2091569795 cites W2036465980 @default.
- W2091569795 cites W2039246404 @default.
- W2091569795 cites W2043321945 @default.
- W2091569795 cites W2044313242 @default.
- W2091569795 cites W2045769321 @default.
- W2091569795 cites W2046574819 @default.
- W2091569795 cites W2047399016 @default.
- W2091569795 cites W2048550494 @default.
- W2091569795 cites W2051361463 @default.
- W2091569795 cites W2051417812 @default.
- W2091569795 cites W2052020812 @default.
- W2091569795 cites W2061845247 @default.
- W2091569795 cites W2069311945 @default.
- W2091569795 cites W2070721363 @default.
- W2091569795 cites W2071507718 @default.
- W2091569795 cites W2074473705 @default.
- W2091569795 cites W2077305100 @default.
- W2091569795 cites W2077536708 @default.
- W2091569795 cites W2078416857 @default.
- W2091569795 cites W2082383840 @default.
- W2091569795 cites W2084708798 @default.
- W2091569795 cites W2086006902 @default.
- W2091569795 cites W2086971829 @default.
- W2091569795 cites W2087460854 @default.
- W2091569795 cites W2106999378 @default.
- W2091569795 cites W2111201663 @default.
- W2091569795 cites W268370677 @default.
- W2091569795 cites W2950827743 @default.
- W2091569795 cites W2951939144 @default.
- W2091569795 cites W4233415211 @default.
- W2091569795 cites W4251575555 @default.
- W2091569795 cites W928993899 @default.
- W2091569795 doi "https://doi.org/10.1021/jp9824205" @default.
- W2091569795 hasPublicationYear "1998" @default.
- W2091569795 type Work @default.
- W2091569795 sameAs 2091569795 @default.
- W2091569795 citedByCount "56" @default.
- W2091569795 countsByYear W20915697952012 @default.
- W2091569795 countsByYear W20915697952013 @default.
- W2091569795 countsByYear W20915697952014 @default.
- W2091569795 countsByYear W20915697952016 @default.
- W2091569795 countsByYear W20915697952019 @default.
- W2091569795 countsByYear W20915697952021 @default.
- W2091569795 crossrefType "journal-article" @default.
- W2091569795 hasAuthorship W2091569795A5021427890 @default.
- W2091569795 hasAuthorship W2091569795A5047318269 @default.
- W2091569795 hasAuthorship W2091569795A5082437517 @default.
- W2091569795 hasAuthorship W2091569795A5088559129 @default.
- W2091569795 hasConcept C106773901 @default.
- W2091569795 hasConcept C113196181 @default.
- W2091569795 hasConcept C120665830 @default.
- W2091569795 hasConcept C121332964 @default.
- W2091569795 hasConcept C147789679 @default.
- W2091569795 hasConcept C150394285 @default.
- W2091569795 hasConcept C159467904 @default.
- W2091569795 hasConcept C161790260 @default.
- W2091569795 hasConcept C169573571 @default.
- W2091569795 hasConcept C178790620 @default.
- W2091569795 hasConcept C185592680 @default.
- W2091569795 hasConcept C192562407 @default.
- W2091569795 hasConcept C2779953769 @default.
- W2091569795 hasConcept C32909587 @default.
- W2091569795 hasConcept C40003534 @default.
- W2091569795 hasConcept C502130503 @default.