Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091683089> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2091683089 endingPage "463" @default.
- W2091683089 startingPage "463" @default.
- W2091683089 abstract "THEOREM I. If E is a separable Banach space such that E has a complemented subspace isomorphic to 11(r) with r uncountable then E contains a complemented, o(EI, E) closed subspace isomorphic to M(A), the Radon measures on the Cantor set. THEOREM II. If E is a separable Banach space such that E' has a subspace isomorphic to 11(r) with r uncountable, then E contains a subspace isomorphic to 11. THEOREM III. Let E be a Banach space. The following are equivalent: (i) E 'is isomorphic to 1li(r); (ii) every absolutely summing operator on E is nuclear; (iii) every compact, absolutely summing operator on E is nuclear; (iv) if X is a separable subspace of E, then there exists a subspace Y such that X C Y C E and Y 'is isomorphic to 11. THEOREM IV. If E is a 20, space then (i) E is isomorphic to 1l(r) for some set r or (ii) E contains a complemented subspace isomorphic to M(^. COROLLARY. If E is a separable ?P space, then E is (i) finite dimensional, or (ii) isomorphic to 1, or (iii) isomorphic to M(A). COROLLARY. If Ll(u) is isomorphic to the conjugate of a separable Banach space, then LI(C) is isomorphic to 11 or M(A). Introduction. In the past few years, a great deal of information has been obtained about Banach spaces E such that E , the dual of E (the space of continuous linear functionals on E), is isometric to some L1i() = LI(S, 1, I), the Banach space of (equivalence classes of) measurable, absolutely integrable functions on some abstract measure space (S, 1, y). See [91 for the most recent results in this area. There apparently have been very few results characterizing those Banach spaces E such that E' is isomorphic to some LQ(S, i, fL). Closely related to this problem is the problem raised by Dieudonne [21 of determining those L 1(L) spaces which are isomorphic to dual spaces. The study of this problem began with Gelfand who proved that LJ[O, 1 is not isomorphic to a dual space [31; recently, Pe,'czyn'ski proved that if 1i is u-finite and not purely atomic then L(QL) is not isomorphic to a dual space [161. (See [81 and the references of [161 Received by the editors December 27, 1971. AMS (MOS) subject classifications (1969). Primary 4610, 4635." @default.
- W2091683089 created "2016-06-24" @default.
- W2091683089 creator A5084423659 @default.
- W2091683089 date "1973-02-01" @default.
- W2091683089 modified "2023-09-26" @default.
- W2091683089 title "Banach Spaces Whose Duals Contain l 1 (Γ) With Applications to the Study of Dual L 1 (μ) Spaces" @default.
- W2091683089 cites W1489871065 @default.
- W2091683089 cites W1497006383 @default.
- W2091683089 cites W1540971912 @default.
- W2091683089 cites W1952838520 @default.
- W2091683089 cites W1964824825 @default.
- W2091683089 cites W1988417110 @default.
- W2091683089 cites W2008239694 @default.
- W2091683089 cites W2038497902 @default.
- W2091683089 cites W2070977069 @default.
- W2091683089 cites W2076561698 @default.
- W2091683089 cites W2081151158 @default.
- W2091683089 cites W2087906067 @default.
- W2091683089 cites W2093327759 @default.
- W2091683089 cites W2128930787 @default.
- W2091683089 doi "https://doi.org/10.2307/1996220" @default.
- W2091683089 hasPublicationYear "1973" @default.
- W2091683089 type Work @default.
- W2091683089 sameAs 2091683089 @default.
- W2091683089 citedByCount "12" @default.
- W2091683089 countsByYear W20916830892014 @default.
- W2091683089 countsByYear W20916830892018 @default.
- W2091683089 crossrefType "journal-article" @default.
- W2091683089 hasAuthorship W2091683089A5084423659 @default.
- W2091683089 hasConcept C104317684 @default.
- W2091683089 hasConcept C105313907 @default.
- W2091683089 hasConcept C132954091 @default.
- W2091683089 hasConcept C136119220 @default.
- W2091683089 hasConcept C138885662 @default.
- W2091683089 hasConcept C185592680 @default.
- W2091683089 hasConcept C202444582 @default.
- W2091683089 hasConcept C2780980858 @default.
- W2091683089 hasConcept C33923547 @default.
- W2091683089 hasConcept C41895202 @default.
- W2091683089 hasConcept C55112680 @default.
- W2091683089 hasConcept C55493867 @default.
- W2091683089 hasConcept C6183050 @default.
- W2091683089 hasConceptScore W2091683089C104317684 @default.
- W2091683089 hasConceptScore W2091683089C105313907 @default.
- W2091683089 hasConceptScore W2091683089C132954091 @default.
- W2091683089 hasConceptScore W2091683089C136119220 @default.
- W2091683089 hasConceptScore W2091683089C138885662 @default.
- W2091683089 hasConceptScore W2091683089C185592680 @default.
- W2091683089 hasConceptScore W2091683089C202444582 @default.
- W2091683089 hasConceptScore W2091683089C2780980858 @default.
- W2091683089 hasConceptScore W2091683089C33923547 @default.
- W2091683089 hasConceptScore W2091683089C41895202 @default.
- W2091683089 hasConceptScore W2091683089C55112680 @default.
- W2091683089 hasConceptScore W2091683089C55493867 @default.
- W2091683089 hasConceptScore W2091683089C6183050 @default.
- W2091683089 hasLocation W20916830891 @default.
- W2091683089 hasOpenAccess W2091683089 @default.
- W2091683089 hasPrimaryLocation W20916830891 @default.
- W2091683089 hasRelatedWork W1499126369 @default.
- W2091683089 hasRelatedWork W1607148758 @default.
- W2091683089 hasRelatedWork W1969591317 @default.
- W2091683089 hasRelatedWork W1989170458 @default.
- W2091683089 hasRelatedWork W1994953866 @default.
- W2091683089 hasRelatedWork W2000991754 @default.
- W2091683089 hasRelatedWork W2079739855 @default.
- W2091683089 hasRelatedWork W2081768540 @default.
- W2091683089 hasRelatedWork W2091683089 @default.
- W2091683089 hasRelatedWork W3041988888 @default.
- W2091683089 hasVolume "176" @default.
- W2091683089 isParatext "false" @default.
- W2091683089 isRetracted "false" @default.
- W2091683089 magId "2091683089" @default.
- W2091683089 workType "article" @default.