Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091720173> ?p ?o ?g. }
- W2091720173 endingPage "84" @default.
- W2091720173 startingPage "73" @default.
- W2091720173 abstract "Programs and studies increasingly use existing data from multiple sources (e.g., surveillance systems, health registries, or governmental agencies) for analysis and inference. These data usually have been collected on different geographical or spatial units, with each varying from the ones of interest. Combining such disparate data creates statistical challenges. Florida’s efforts to move toward implementing the Centers for Disease Control and Prevention (CDC)’s Environmental Public Health Tracking (EPHT) program aptly illustrate these concerns, which are typical of studies designed to measure the association between environmental and health outcomes. In this paper, we develop models of spatial associations between myocardial infarctions (MIs) and ambient ozone levels in Florida during August 2005 and use these models to illustrate the problems that can occur when making inferences from aggregated data, the concept of spatial support, and the importance of correct uncertainty assessment. Existing data on hospital discharges and emergency department visits were obtained from Florida’s Agency for Health Care Administration. Environmental data were obtained from Florida’s Department of Environmental Protection; sociodemographic data were obtained from the US Census Bureau; and data from CDC’s Behavioral Risk Factor Surveillance System were used to provide additional information on other risk factors. We highlight the opportunities and challenges associated with combining disparate spatial data for EPHT analyses. We compare the results from two different approaches to data linkage, focusing on the need to account for spatial scale and the support of spatial data in the analysis. We use geographically weighted regression, not as a visual mapping tool, but as an inferential tool designed to indicate the need for spatial coefficients, a test that cannot be made by using the majority of Bayesian models. Finally, we use geostatistical simulation methods for uncertainty analysis to demonstrate its importance in models with predicted covariates. Our focus is on relatively simple methods and concepts that can be implemented with ESRI’s® ArcGIS® software." @default.
- W2091720173 created "2016-06-24" @default.
- W2091720173 creator A5004145247 @default.
- W2091720173 creator A5033976746 @default.
- W2091720173 creator A5056166169 @default.
- W2091720173 creator A5076658707 @default.
- W2091720173 creator A5081012770 @default.
- W2091720173 date "2009-10-01" @default.
- W2091720173 modified "2023-09-27" @default.
- W2091720173 title "Linking health and environmental data in geographical analysis: It’s so much more than centroids" @default.
- W2091720173 cites W1967433218 @default.
- W2091720173 cites W1976165667 @default.
- W2091720173 cites W1981548893 @default.
- W2091720173 cites W1988210283 @default.
- W2091720173 cites W1997280412 @default.
- W2091720173 cites W2005021595 @default.
- W2091720173 cites W2007004136 @default.
- W2091720173 cites W2012394874 @default.
- W2091720173 cites W2027544139 @default.
- W2091720173 cites W2037333119 @default.
- W2091720173 cites W2047120335 @default.
- W2091720173 cites W2054186498 @default.
- W2091720173 cites W2080943278 @default.
- W2091720173 cites W2085210969 @default.
- W2091720173 cites W2093161332 @default.
- W2091720173 cites W2100277350 @default.
- W2091720173 cites W2131305454 @default.
- W2091720173 cites W2134260468 @default.
- W2091720173 cites W2148099625 @default.
- W2091720173 cites W2155079143 @default.
- W2091720173 cites W2161302222 @default.
- W2091720173 cites W2169752498 @default.
- W2091720173 cites W2396871564 @default.
- W2091720173 doi "https://doi.org/10.1016/j.sste.2009.07.008" @default.
- W2091720173 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22749414" @default.
- W2091720173 hasPublicationYear "2009" @default.
- W2091720173 type Work @default.
- W2091720173 sameAs 2091720173 @default.
- W2091720173 citedByCount "38" @default.
- W2091720173 countsByYear W20917201732012 @default.
- W2091720173 countsByYear W20917201732013 @default.
- W2091720173 countsByYear W20917201732014 @default.
- W2091720173 countsByYear W20917201732015 @default.
- W2091720173 countsByYear W20917201732016 @default.
- W2091720173 countsByYear W20917201732017 @default.
- W2091720173 countsByYear W20917201732018 @default.
- W2091720173 countsByYear W20917201732019 @default.
- W2091720173 countsByYear W20917201732021 @default.
- W2091720173 countsByYear W20917201732023 @default.
- W2091720173 crossrefType "journal-article" @default.
- W2091720173 hasAuthorship W2091720173A5004145247 @default.
- W2091720173 hasAuthorship W2091720173A5033976746 @default.
- W2091720173 hasAuthorship W2091720173A5056166169 @default.
- W2091720173 hasAuthorship W2091720173A5076658707 @default.
- W2091720173 hasAuthorship W2091720173A5081012770 @default.
- W2091720173 hasConcept C108170787 @default.
- W2091720173 hasConcept C111472728 @default.
- W2091720173 hasConcept C124101348 @default.
- W2091720173 hasConcept C138885662 @default.
- W2091720173 hasConcept C142724271 @default.
- W2091720173 hasConcept C159620131 @default.
- W2091720173 hasConcept C17744445 @default.
- W2091720173 hasConcept C199539241 @default.
- W2091720173 hasConcept C205649164 @default.
- W2091720173 hasConcept C2522767166 @default.
- W2091720173 hasConcept C2776356880 @default.
- W2091720173 hasConcept C2778755073 @default.
- W2091720173 hasConcept C2778959093 @default.
- W2091720173 hasConcept C2779134260 @default.
- W2091720173 hasConcept C41008148 @default.
- W2091720173 hasConcept C58640448 @default.
- W2091720173 hasConcept C62649853 @default.
- W2091720173 hasConcept C71924100 @default.
- W2091720173 hasConcept C99454951 @default.
- W2091720173 hasConceptScore W2091720173C108170787 @default.
- W2091720173 hasConceptScore W2091720173C111472728 @default.
- W2091720173 hasConceptScore W2091720173C124101348 @default.
- W2091720173 hasConceptScore W2091720173C138885662 @default.
- W2091720173 hasConceptScore W2091720173C142724271 @default.
- W2091720173 hasConceptScore W2091720173C159620131 @default.
- W2091720173 hasConceptScore W2091720173C17744445 @default.
- W2091720173 hasConceptScore W2091720173C199539241 @default.
- W2091720173 hasConceptScore W2091720173C205649164 @default.
- W2091720173 hasConceptScore W2091720173C2522767166 @default.
- W2091720173 hasConceptScore W2091720173C2776356880 @default.
- W2091720173 hasConceptScore W2091720173C2778755073 @default.
- W2091720173 hasConceptScore W2091720173C2778959093 @default.
- W2091720173 hasConceptScore W2091720173C2779134260 @default.
- W2091720173 hasConceptScore W2091720173C41008148 @default.
- W2091720173 hasConceptScore W2091720173C58640448 @default.
- W2091720173 hasConceptScore W2091720173C62649853 @default.
- W2091720173 hasConceptScore W2091720173C71924100 @default.
- W2091720173 hasConceptScore W2091720173C99454951 @default.
- W2091720173 hasIssue "1" @default.
- W2091720173 hasLocation W20917201731 @default.
- W2091720173 hasLocation W20917201732 @default.
- W2091720173 hasOpenAccess W2091720173 @default.
- W2091720173 hasPrimaryLocation W20917201731 @default.