Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091730972> ?p ?o ?g. }
- W2091730972 endingPage "203" @default.
- W2091730972 startingPage "179" @default.
- W2091730972 abstract "Worldwide interest in the biological effects of ELF (extremely low frequency, <1 kHz) electromagnetic fields has grown significantly. Health professionals and government administrators and regulators, scientists and engineers, and, importantly, an increasing number of individuals in the general public are interested in this health issue. The goal of research at the cellular level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand‐receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric ( E ) or the magnetic ( B ) field, or if combinations of static B and time‐varying B fields represent an exposure metric for the cell. This question relates directly to understanding fundamental interaction mechanisms and to the development of a rationale for ELF dose threshold guidelines. The weight of experimental evidence indicates that an induced E field according to Faraday's law of induction during magnetic field exposures elicits cellular effects. An E ‐field‐mediated interaction has interesting consequences for microdosimetry at the cellular level and is mechanistically consistent with an interaction at the cell surface, since the E field does not penetrate beyond the cell membrane. Recently, several studies have suggested that an ELF B field by itself or in combination with a static B field may elicit cellular effects. Thus in addition to E ‐field‐mediated effects, other interaction mechanisms as yet not fully understood may operate at the cellular level; this complexity is in contrast to the case for ionizing radiation. In addition to the question of an exposure field metric, the biological state of the target cell is important in ELF interactions. Biological factors such as cell type, cell cycle, cell activation, age of donor animal, passage number of cell line, presence of specific growth/mitogenic factors, temperature, shape, and cell density/packing during exposures have been shown to play a role in mediating ELF interactions with cells. Most recently, reports of single‐cell studies usher in a new direction for research that can be termed microbioelectromagnetics. Single‐cell digital microscopy introduces a new approach to answer the above questions with potential for real‐time microdosimetry and bioeffects limited only by the spatial resolution of state‐of‐the‐art microscopy, which is approximately 0.1 /μm. Digital imaging microscopy should therefore permit the quantitative assessment of spatial and temporal features of ELF field interactions within living single cells." @default.
- W2091730972 created "2016-06-24" @default.
- W2091730972 creator A5026339186 @default.
- W2091730972 date "1995-01-01" @default.
- W2091730972 modified "2023-09-27" @default.
- W2091730972 title "Cellular studies and interaction mechanisms of extremely low frequency fields" @default.
- W2091730972 cites W1499995230 @default.
- W2091730972 cites W1509598817 @default.
- W2091730972 cites W1601494974 @default.
- W2091730972 cites W1787366216 @default.
- W2091730972 cites W1818618857 @default.
- W2091730972 cites W1875703796 @default.
- W2091730972 cites W1970114690 @default.
- W2091730972 cites W1971891696 @default.
- W2091730972 cites W1975884255 @default.
- W2091730972 cites W1975949637 @default.
- W2091730972 cites W1978197596 @default.
- W2091730972 cites W1978299718 @default.
- W2091730972 cites W1978524989 @default.
- W2091730972 cites W1980166477 @default.
- W2091730972 cites W1981762003 @default.
- W2091730972 cites W1983213792 @default.
- W2091730972 cites W1985844364 @default.
- W2091730972 cites W1986307310 @default.
- W2091730972 cites W1999540913 @default.
- W2091730972 cites W2000831227 @default.
- W2091730972 cites W2001563261 @default.
- W2091730972 cites W2002302033 @default.
- W2091730972 cites W2002518831 @default.
- W2091730972 cites W2003605913 @default.
- W2091730972 cites W2006065708 @default.
- W2091730972 cites W2016393620 @default.
- W2091730972 cites W2019241459 @default.
- W2091730972 cites W2020727079 @default.
- W2091730972 cites W2021816782 @default.
- W2091730972 cites W2022604092 @default.
- W2091730972 cites W2029187641 @default.
- W2091730972 cites W2029324830 @default.
- W2091730972 cites W2041114848 @default.
- W2091730972 cites W2042223149 @default.
- W2091730972 cites W2046710695 @default.
- W2091730972 cites W2047190829 @default.
- W2091730972 cites W2047561087 @default.
- W2091730972 cites W2048067607 @default.
- W2091730972 cites W2054472482 @default.
- W2091730972 cites W2060082893 @default.
- W2091730972 cites W2062757236 @default.
- W2091730972 cites W2063309244 @default.
- W2091730972 cites W2063951380 @default.
- W2091730972 cites W2064815974 @default.
- W2091730972 cites W2068246295 @default.
- W2091730972 cites W2069746096 @default.
- W2091730972 cites W2074002471 @default.
- W2091730972 cites W2078898198 @default.
- W2091730972 cites W2081607665 @default.
- W2091730972 cites W2082331391 @default.
- W2091730972 cites W2082693113 @default.
- W2091730972 cites W2084491850 @default.
- W2091730972 cites W2089172210 @default.
- W2091730972 cites W2089319524 @default.
- W2091730972 cites W2101995901 @default.
- W2091730972 cites W2108408988 @default.
- W2091730972 cites W2108577336 @default.
- W2091730972 cites W2112793668 @default.
- W2091730972 cites W2113329649 @default.
- W2091730972 cites W2136518918 @default.
- W2091730972 cites W2138054724 @default.
- W2091730972 cites W2142928034 @default.
- W2091730972 cites W2145137703 @default.
- W2091730972 cites W2147544185 @default.
- W2091730972 cites W2157472184 @default.
- W2091730972 cites W2163059879 @default.
- W2091730972 cites W2166937577 @default.
- W2091730972 cites W2173601290 @default.
- W2091730972 cites W4250609883 @default.
- W2091730972 cites W4302338313 @default.
- W2091730972 cites W43792911 @default.
- W2091730972 cites W58380290 @default.
- W2091730972 doi "https://doi.org/10.1029/94rs01159" @default.
- W2091730972 hasPublicationYear "1995" @default.
- W2091730972 type Work @default.
- W2091730972 sameAs 2091730972 @default.
- W2091730972 citedByCount "61" @default.
- W2091730972 countsByYear W20917309722012 @default.
- W2091730972 countsByYear W20917309722013 @default.
- W2091730972 countsByYear W20917309722014 @default.
- W2091730972 countsByYear W20917309722018 @default.
- W2091730972 countsByYear W20917309722020 @default.
- W2091730972 countsByYear W20917309722023 @default.
- W2091730972 crossrefType "journal-article" @default.
- W2091730972 hasAuthorship W2091730972A5026339186 @default.
- W2091730972 hasConcept C104317684 @default.
- W2091730972 hasConcept C121608353 @default.
- W2091730972 hasConcept C16318435 @default.
- W2091730972 hasConcept C41091548 @default.
- W2091730972 hasConcept C501734568 @default.
- W2091730972 hasConcept C54355233 @default.
- W2091730972 hasConcept C555283112 @default.