Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091764727> ?p ?o ?g. }
- W2091764727 endingPage "111" @default.
- W2091764727 startingPage "89" @default.
- W2091764727 abstract "Hydrological simulation, based on weather inputs and the physical characterization of the watershed, is a suitable approach to predict the corresponding streamflow. This work, carried out on four different watersheds, analyzed the impacts of using three different meteorological data inputs in the same model to compare the model’s accuracy when simulated and observed streamflow are compared. Meteorological data from the Daily Global Historical Climatology Network (GHCN-D), National Land Data Assimilation Systems (NLDAS) and the National Operation Hydrological Remote Sensing Center’s Interactive Snow Information (NOHRSC-ISI) were used as an input into the Soil and Water Assessment Tool (SWAT) hydrological model and compared as three different scenarios on each watershed. The results showed that meteorological data from an assimilation system like NLDAS achieved better results than simulations performed with ground-based meteorological data, such as GHCN-D. However, further work needs to be done to improve both the datasets and model capabilities, in order to better predict streamflow." @default.
- W2091764727 created "2016-06-24" @default.
- W2091764727 creator A5007318963 @default.
- W2091764727 creator A5013641800 @default.
- W2091764727 creator A5026364033 @default.
- W2091764727 creator A5047615064 @default.
- W2091764727 date "2014-10-31" @default.
- W2091764727 modified "2023-09-26" @default.
- W2091764727 title "Remote Sensing and Ground-Based Weather Forcing Data Analysis for Streamflow Simulation" @default.
- W2091764727 cites W1527594523 @default.
- W2091764727 cites W1978476943 @default.
- W2091764727 cites W1979282872 @default.
- W2091764727 cites W1985797798 @default.
- W2091764727 cites W2006476353 @default.
- W2091764727 cites W2006652808 @default.
- W2091764727 cites W2009616556 @default.
- W2091764727 cites W2012013879 @default.
- W2091764727 cites W2046598310 @default.
- W2091764727 cites W2055950383 @default.
- W2091764727 cites W2059646894 @default.
- W2091764727 cites W2064847727 @default.
- W2091764727 cites W2069266605 @default.
- W2091764727 cites W2070086504 @default.
- W2091764727 cites W2071855712 @default.
- W2091764727 cites W2079021526 @default.
- W2091764727 cites W2082007556 @default.
- W2091764727 cites W2100714871 @default.
- W2091764727 cites W2103974547 @default.
- W2091764727 cites W2105424400 @default.
- W2091764727 cites W2112306707 @default.
- W2091764727 cites W2113153257 @default.
- W2091764727 cites W2119132330 @default.
- W2091764727 cites W2120683298 @default.
- W2091764727 cites W2122463349 @default.
- W2091764727 cites W2131576403 @default.
- W2091764727 cites W2131960353 @default.
- W2091764727 cites W2135864221 @default.
- W2091764727 cites W2139683263 @default.
- W2091764727 cites W2140614176 @default.
- W2091764727 cites W2146577723 @default.
- W2091764727 cites W2157539439 @default.
- W2091764727 cites W2280145105 @default.
- W2091764727 doi "https://doi.org/10.3390/hydrology1010089" @default.
- W2091764727 hasPublicationYear "2014" @default.
- W2091764727 type Work @default.
- W2091764727 sameAs 2091764727 @default.
- W2091764727 citedByCount "6" @default.
- W2091764727 countsByYear W20917647272015 @default.
- W2091764727 countsByYear W20917647272018 @default.
- W2091764727 countsByYear W20917647272019 @default.
- W2091764727 countsByYear W20917647272021 @default.
- W2091764727 countsByYear W20917647272022 @default.
- W2091764727 crossrefType "journal-article" @default.
- W2091764727 hasAuthorship W2091764727A5007318963 @default.
- W2091764727 hasAuthorship W2091764727A5013641800 @default.
- W2091764727 hasAuthorship W2091764727A5026364033 @default.
- W2091764727 hasAuthorship W2091764727A5047615064 @default.
- W2091764727 hasBestOaLocation W20917647271 @default.
- W2091764727 hasConcept C119857082 @default.
- W2091764727 hasConcept C126645576 @default.
- W2091764727 hasConcept C127313418 @default.
- W2091764727 hasConcept C127413603 @default.
- W2091764727 hasConcept C133204551 @default.
- W2091764727 hasConcept C150547873 @default.
- W2091764727 hasConcept C153294291 @default.
- W2091764727 hasConcept C163109420 @default.
- W2091764727 hasConcept C187320778 @default.
- W2091764727 hasConcept C197046000 @default.
- W2091764727 hasConcept C197115733 @default.
- W2091764727 hasConcept C205649164 @default.
- W2091764727 hasConcept C24552861 @default.
- W2091764727 hasConcept C2780852570 @default.
- W2091764727 hasConcept C39432304 @default.
- W2091764727 hasConcept C41008148 @default.
- W2091764727 hasConcept C49204034 @default.
- W2091764727 hasConcept C53739315 @default.
- W2091764727 hasConcept C58640448 @default.
- W2091764727 hasConcept C76886044 @default.
- W2091764727 hasConceptScore W2091764727C119857082 @default.
- W2091764727 hasConceptScore W2091764727C126645576 @default.
- W2091764727 hasConceptScore W2091764727C127313418 @default.
- W2091764727 hasConceptScore W2091764727C127413603 @default.
- W2091764727 hasConceptScore W2091764727C133204551 @default.
- W2091764727 hasConceptScore W2091764727C150547873 @default.
- W2091764727 hasConceptScore W2091764727C153294291 @default.
- W2091764727 hasConceptScore W2091764727C163109420 @default.
- W2091764727 hasConceptScore W2091764727C187320778 @default.
- W2091764727 hasConceptScore W2091764727C197046000 @default.
- W2091764727 hasConceptScore W2091764727C197115733 @default.
- W2091764727 hasConceptScore W2091764727C205649164 @default.
- W2091764727 hasConceptScore W2091764727C24552861 @default.
- W2091764727 hasConceptScore W2091764727C2780852570 @default.
- W2091764727 hasConceptScore W2091764727C39432304 @default.
- W2091764727 hasConceptScore W2091764727C41008148 @default.
- W2091764727 hasConceptScore W2091764727C49204034 @default.
- W2091764727 hasConceptScore W2091764727C53739315 @default.
- W2091764727 hasConceptScore W2091764727C58640448 @default.
- W2091764727 hasConceptScore W2091764727C76886044 @default.