Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091769334> ?p ?o ?g. }
- W2091769334 endingPage "512" @default.
- W2091769334 startingPage "505" @default.
- W2091769334 abstract "Application of the artificial neural network (ANN) to calculate the solubility of drugs in water–cosolvent mixtures was shown using 35 experimental data sets. The networks employed were feedforward backpropagation errors with one hidden layer. The topology of neural network was optimized and the optimum topology achieved was a 6-5-1 architecture. All data points in each set were used to train the ANN and the solubilities were back-calculated employing the trained networks. The differences between calculated solubilities and experimental values was used as an accuracy criterion and defined as mean percentage deviation (MPD). The overall MPD (OMPD) and its S.D. obtained for 35 data sets was 0.90 ± 0.65%. To assess the prediction capability of the method, five data points in each set were used as training set and the solubility at other solvent compositions were predicted using trained ANNs whereby the OMPD (±S.D.) for this analysis was 9.04 ± 3.84%. All 496 data points from 35 data sets were used to train a general ANN model, then the solubilities were back-calculated using the trained network and MPD (±S.D.) was 24.76 ± 14.76%. To test the prediction capability of the general ANN model, all data points with odd set numbers from 35 data sets were employed to train the ANN model, the solubility for the even data set numbers were predicted and the OMPD (±S.D.) was 55.97 ± 57.88%. To provide a general ANN model for a given cosolvent, the experimental data points from each binary solvent were used to train ANN and back-calculated solubilities were used to calculate MPD values. The OMPD (±S.D.) for five cosolvent systems studied was 2.02 ± 1.05%. A similar numerical analysis was used to calculate the solubility of structurally related drugs in a given binary solvent and the OMPD (±S.D.) was 4.70 ± 2.02%. ANN model also trained using solubility data from a given drug in different cosolvent mixtures and the OMPD (±S.D.) obtained was 3.36 ± 1.66%. The results for different numerical analyses using ANN were compared with those obtained from the most accurate multiple linear regression model, namely the combined nearly ideal binary solvent/Redlich–Kister equation, and the ANN model showed excellent superiority to the regression model." @default.
- W2091769334 created "2016-06-24" @default.
- W2091769334 creator A5005776486 @default.
- W2091769334 creator A5035923900 @default.
- W2091769334 creator A5056414050 @default.
- W2091769334 creator A5072366908 @default.
- W2091769334 date "2004-06-01" @default.
- W2091769334 modified "2023-10-18" @default.
- W2091769334 title "Modeling drug solubility in water–cosolvent mixtures using an artificial neural network" @default.
- W2091769334 cites W1551729708 @default.
- W2091769334 cites W1968966853 @default.
- W2091769334 cites W1971771419 @default.
- W2091769334 cites W1980578227 @default.
- W2091769334 cites W1989519432 @default.
- W2091769334 cites W1991179481 @default.
- W2091769334 cites W1998086089 @default.
- W2091769334 cites W2003570198 @default.
- W2091769334 cites W2004841458 @default.
- W2091769334 cites W2013052507 @default.
- W2091769334 cites W2013894207 @default.
- W2091769334 cites W2019061434 @default.
- W2091769334 cites W2027266627 @default.
- W2091769334 cites W2029147694 @default.
- W2091769334 cites W2030795735 @default.
- W2091769334 cites W2033525158 @default.
- W2091769334 cites W2038210360 @default.
- W2091769334 cites W2046956407 @default.
- W2091769334 cites W2048510184 @default.
- W2091769334 cites W2050329559 @default.
- W2091769334 cites W2059038114 @default.
- W2091769334 cites W2069049391 @default.
- W2091769334 cites W2069156629 @default.
- W2091769334 cites W2070541805 @default.
- W2091769334 cites W2071211881 @default.
- W2091769334 cites W2071890004 @default.
- W2091769334 cites W2072462334 @default.
- W2091769334 cites W2073607020 @default.
- W2091769334 cites W2077619161 @default.
- W2091769334 cites W2077833695 @default.
- W2091769334 cites W2090902941 @default.
- W2091769334 cites W2108977543 @default.
- W2091769334 cites W2115892857 @default.
- W2091769334 cites W2118372038 @default.
- W2091769334 cites W2136265257 @default.
- W2091769334 cites W2159082789 @default.
- W2091769334 cites W2159366225 @default.
- W2091769334 cites W2164112197 @default.
- W2091769334 cites W2164845510 @default.
- W2091769334 cites W4295813351 @default.
- W2091769334 cites W85259421 @default.
- W2091769334 doi "https://doi.org/10.1016/j.farmac.2004.02.005" @default.
- W2091769334 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15178314" @default.
- W2091769334 hasPublicationYear "2004" @default.
- W2091769334 type Work @default.
- W2091769334 sameAs 2091769334 @default.
- W2091769334 citedByCount "18" @default.
- W2091769334 countsByYear W20917693342013 @default.
- W2091769334 countsByYear W20917693342018 @default.
- W2091769334 countsByYear W20917693342019 @default.
- W2091769334 countsByYear W20917693342020 @default.
- W2091769334 countsByYear W20917693342022 @default.
- W2091769334 crossrefType "journal-article" @default.
- W2091769334 hasAuthorship W2091769334A5005776486 @default.
- W2091769334 hasAuthorship W2091769334A5035923900 @default.
- W2091769334 hasAuthorship W2091769334A5056414050 @default.
- W2091769334 hasAuthorship W2091769334A5072366908 @default.
- W2091769334 hasConcept C11413529 @default.
- W2091769334 hasConcept C147789679 @default.
- W2091769334 hasConcept C154945302 @default.
- W2091769334 hasConcept C155032097 @default.
- W2091769334 hasConcept C155574463 @default.
- W2091769334 hasConcept C16910744 @default.
- W2091769334 hasConcept C177264268 @default.
- W2091769334 hasConcept C185592680 @default.
- W2091769334 hasConcept C186060115 @default.
- W2091769334 hasConcept C199360897 @default.
- W2091769334 hasConcept C21080849 @default.
- W2091769334 hasConcept C41008148 @default.
- W2091769334 hasConcept C50644808 @default.
- W2091769334 hasConcept C58489278 @default.
- W2091769334 hasConcept C86803240 @default.
- W2091769334 hasConceptScore W2091769334C11413529 @default.
- W2091769334 hasConceptScore W2091769334C147789679 @default.
- W2091769334 hasConceptScore W2091769334C154945302 @default.
- W2091769334 hasConceptScore W2091769334C155032097 @default.
- W2091769334 hasConceptScore W2091769334C155574463 @default.
- W2091769334 hasConceptScore W2091769334C16910744 @default.
- W2091769334 hasConceptScore W2091769334C177264268 @default.
- W2091769334 hasConceptScore W2091769334C185592680 @default.
- W2091769334 hasConceptScore W2091769334C186060115 @default.
- W2091769334 hasConceptScore W2091769334C199360897 @default.
- W2091769334 hasConceptScore W2091769334C21080849 @default.
- W2091769334 hasConceptScore W2091769334C41008148 @default.
- W2091769334 hasConceptScore W2091769334C50644808 @default.
- W2091769334 hasConceptScore W2091769334C58489278 @default.
- W2091769334 hasConceptScore W2091769334C86803240 @default.
- W2091769334 hasIssue "6" @default.
- W2091769334 hasLocation W20917693341 @default.