Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091770978> ?p ?o ?g. }
- W2091770978 endingPage "3936" @default.
- W2091770978 startingPage "3927" @default.
- W2091770978 abstract "An approach is described for joint interleaved recording, real-time processing, and analysis of NMR data sets. The method employs multidimensional decomposition to find common information in a set of conventional triple-resonance spectra recorded in the nonlinear sampling mode, and builds a model of hyperdimensional (HD) spectrum. While preserving sensitivity per unit of measurement time and allowing for maximal spectral resolution, the approach reduces data collection time on average by 2 orders of magnitude compared to the conventional method. The 7-10 dimensional HD spectrum, which is represented as a set of deconvoluted 1D vectors, is easy to handle and amenable for automated analysis. The method is exemplified by automated assignment for two protein systems of low and high spectral complexity: ubiquitin (globular, 8 kDa) and ζcyt (naturally disordered, 13 kDa). The collection and backbone assignment of the data sets are achieved in real time after approximately 1 and 10 h, respectively. The approach removes the most critical time bottlenecks in data acquisition and analysis. Thus, it can significantly increase the value of NMR spectroscopy in structural biology, for example, in high-throughput structural genomics applications." @default.
- W2091770978 created "2016-06-24" @default.
- W2091770978 creator A5022052723 @default.
- W2091770978 creator A5029977238 @default.
- W2091770978 creator A5038723590 @default.
- W2091770978 creator A5058231278 @default.
- W2091770978 creator A5060554313 @default.
- W2091770978 date "2008-03-01" @default.
- W2091770978 modified "2023-09-28" @default.
- W2091770978 title "Hyperdimensional NMR Spectroscopy with Nonlinear Sampling" @default.
- W2091770978 cites W1245485676 @default.
- W2091770978 cites W1252283796 @default.
- W2091770978 cites W1505608864 @default.
- W2091770978 cites W1532442118 @default.
- W2091770978 cites W1538837940 @default.
- W2091770978 cites W1568669525 @default.
- W2091770978 cites W1966197586 @default.
- W2091770978 cites W1968947722 @default.
- W2091770978 cites W1978545297 @default.
- W2091770978 cites W1982092775 @default.
- W2091770978 cites W1983983597 @default.
- W2091770978 cites W1984484995 @default.
- W2091770978 cites W1986307464 @default.
- W2091770978 cites W1988326881 @default.
- W2091770978 cites W1992465900 @default.
- W2091770978 cites W1998559457 @default.
- W2091770978 cites W2002533831 @default.
- W2091770978 cites W2004658690 @default.
- W2091770978 cites W2004776804 @default.
- W2091770978 cites W2008986158 @default.
- W2091770978 cites W2014114313 @default.
- W2091770978 cites W2014399062 @default.
- W2091770978 cites W2014418975 @default.
- W2091770978 cites W2019737005 @default.
- W2091770978 cites W2021172121 @default.
- W2091770978 cites W2023998809 @default.
- W2091770978 cites W2029563140 @default.
- W2091770978 cites W2032299994 @default.
- W2091770978 cites W2032667424 @default.
- W2091770978 cites W2041148717 @default.
- W2091770978 cites W2045945141 @default.
- W2091770978 cites W2047672294 @default.
- W2091770978 cites W2069841410 @default.
- W2091770978 cites W2073892309 @default.
- W2091770978 cites W2075086532 @default.
- W2091770978 cites W2080257717 @default.
- W2091770978 cites W2085372822 @default.
- W2091770978 cites W2094511448 @default.
- W2091770978 cites W2096724056 @default.
- W2091770978 cites W2113070329 @default.
- W2091770978 cites W2114122754 @default.
- W2091770978 cites W2116435022 @default.
- W2091770978 cites W2122792240 @default.
- W2091770978 cites W2124181495 @default.
- W2091770978 cites W2162467013 @default.
- W2091770978 cites W2169821755 @default.
- W2091770978 cites W274393520 @default.
- W2091770978 cites W4242183425 @default.
- W2091770978 doi "https://doi.org/10.1021/ja077282o" @default.
- W2091770978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18311971" @default.
- W2091770978 hasPublicationYear "2008" @default.
- W2091770978 type Work @default.
- W2091770978 sameAs 2091770978 @default.
- W2091770978 citedByCount "111" @default.
- W2091770978 countsByYear W20917709782012 @default.
- W2091770978 countsByYear W20917709782013 @default.
- W2091770978 countsByYear W20917709782014 @default.
- W2091770978 countsByYear W20917709782015 @default.
- W2091770978 countsByYear W20917709782016 @default.
- W2091770978 countsByYear W20917709782017 @default.
- W2091770978 countsByYear W20917709782018 @default.
- W2091770978 countsByYear W20917709782019 @default.
- W2091770978 countsByYear W20917709782020 @default.
- W2091770978 countsByYear W20917709782021 @default.
- W2091770978 countsByYear W20917709782022 @default.
- W2091770978 countsByYear W20917709782023 @default.
- W2091770978 crossrefType "journal-article" @default.
- W2091770978 hasAuthorship W2091770978A5022052723 @default.
- W2091770978 hasAuthorship W2091770978A5029977238 @default.
- W2091770978 hasAuthorship W2091770978A5038723590 @default.
- W2091770978 hasAuthorship W2091770978A5058231278 @default.
- W2091770978 hasAuthorship W2091770978A5060554313 @default.
- W2091770978 hasConcept C113196181 @default.
- W2091770978 hasConcept C11413529 @default.
- W2091770978 hasConcept C120665830 @default.
- W2091770978 hasConcept C121332964 @default.
- W2091770978 hasConcept C138268822 @default.
- W2091770978 hasConcept C140779682 @default.
- W2091770978 hasConcept C154945302 @default.
- W2091770978 hasConcept C158622935 @default.
- W2091770978 hasConcept C177264268 @default.
- W2091770978 hasConcept C185592680 @default.
- W2091770978 hasConcept C186060115 @default.
- W2091770978 hasConcept C199360897 @default.
- W2091770978 hasConcept C32891209 @default.
- W2091770978 hasConcept C41008148 @default.
- W2091770978 hasConcept C43617362 @default.
- W2091770978 hasConcept C58489278 @default.