Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091839997> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2091839997 endingPage "3539" @default.
- W2091839997 startingPage "3531" @default.
- W2091839997 abstract "UDP-glucuronosyltransferase 1A10 (UGT1A10) catalyzes glucuronidation of a wide range of chemicals including many drugs. Here, we report the first in silico model quantifying the substrate selectivity and binding affinity (as Km) for UGT1A10. The training set for model construction comprises 32 structurally diverse compounds, which are known substrates for UGT1A10. The model was derived by applying the standard VolSurf method involving calculation of VolSurf descriptors and partial least square (PLS) analyses. The yielded PLS model with two components shows statistical significance in both fitting and internal predicting (r2 = 0.827, q2 = 0.774). The model predictability was further validated against a test set of 11 external compounds. The activity values for all test substrates were predicted within 1 log unit. Moreover, the model reveals an overlay of chemical features influencing the enzyme–substrate binding. Those include the size and shape, capacity factors, hydrophilic regions, hydrophobic regions, and polarizability. In conclusion, the VolSurf approach is successfully utilized to establish a predictive model for UGT1A10. The derived model should be an efficient tool for high-throughput prediction of UGT1A10 metabolism. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:3531–3539, 2012 UDP-glucuronosyltransferase 1A10 (UGT1A10) catalyzes glucuronidation of a wide range of chemicals including many drugs. Here, we report the first in silico model quantifying the substrate selectivity and binding affinity (as Km) for UGT1A10. The training set for model construction comprises 32 structurally diverse compounds, which are known substrates for UGT1A10. The model was derived by applying the standard VolSurf method involving calculation of VolSurf descriptors and partial least square (PLS) analyses. The yielded PLS model with two components shows statistical significance in both fitting and internal predicting (r2 = 0.827, q2 = 0.774). The model predictability was further validated against a test set of 11 external compounds. The activity values for all test substrates were predicted within 1 log unit. Moreover, the model reveals an overlay of chemical features influencing the enzyme–substrate binding. Those include the size and shape, capacity factors, hydrophilic regions, hydrophobic regions, and polarizability. In conclusion, the VolSurf approach is successfully utilized to establish a predictive model for UGT1A10. The derived model should be an efficient tool for high-throughput prediction of UGT1A10 metabolism. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:3531–3539, 2012 Abbreviations used:CoMFAcomparative molecular field analysisH-bondhydrogen bondPCprincipal componentQSARquantitative structure–activity relationshipUGTUDP-glucuronosyltransferaseINTRODUCTIONDrug-metabolizing enzymes catalyze the metabolic reactions such as oxidation, reduction, and conjugation. As a result, a foreign compound is inactivated and readily eliminated from the body, though, in some cases, bioactivation of a foreign compound is possible through these metabolic actions.1.Sheweita S.A. Drug-metabolizing enzymes: Mechanisms and functions.Curr Drug Metab. 2000; 1: 107-132Crossref PubMed Scopus (177) Google Scholar Given their key role in xenobiotic/drug disposition, considerable efforts have been directed to understand the functions, catalytic mechanisms, structures, and regulation of drug-metabolizing enzymes.1.Sheweita S.A. Drug-metabolizing enzymes: Mechanisms and functions.Curr Drug Metab. 2000; 1: 107-132Crossref PubMed Scopus (177) Google Scholar2.Tolson A.H. Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR.Adv Drug Deliv Rev. 2010; 62: 1238-1249Crossref PubMed Scopus (277) Google Scholar Of note, the substrate selectivity of these enzymes has been an area of long-standing interest. This is because the knowledge can be used to predict the metabolic fate of a new chemical entity, and also to derive the contribution of a particular enzyme to the overall metabolism.UDP-glucuronosyltransferase 1A10 (UGT1A10) is a member of the UGT family (EC 2.4.1.17). Enzymes of this family mediate the glucuronidation reaction, an important metabolic pathway in humans. Because of its high expression in the gastrointestinal tract, UGT1A10 plays a significant role in first-pass glucuronidation of raloxifene, limiting the oral bioavailability (∼2%) of this drug.3.Mizuma T. Intestinal glucuronidation metabolism may have a greater impact on oral bioavailability than hepatic glucuronidation metabolism in humans: A study with raloxifene, substrate for UGT1A1, 1A8, 1A9, and 1A10.Int J Pharm. 2009; 378: 140-141Crossref PubMed Scopus (79) Google Scholar, 4.Jeong E.J. Liu Y. Lin H. Hu M. Species- and disposition model-dependent metabolism of raloxifene in gut and liver: Role of UGT1A10.Drug Metab Dispos. 2005; 33: 785-794Crossref PubMed Scopus (94) Google Scholar, 5.Kosaka K. Sakai N. Endo Y. Fukuhara Y. Tsuda-Tsukimoto M. Ohtsuka T. Kino I. Tanimoto T. Takeba N. Takahashi M. Kume T. Impact of intestinal glucuronidation on the pharmacokinetics of raloxifene.Drug Metab Dispos. 2011; 39: 1495-1502Crossref PubMed Scopus (36) Google Scholar Although lacking support from in vivo experiments, major contribution of UGT1A10 to intestinal metabolism of darexaban and magnolol is also possible.6.Zhu L. Ge G. Zhang H. Liu H. He G. Liang S. Zhang Y. Fang Z. Dong P. Finel M. Yang L. Characterization of hepatic and intestinal glucuronidation of magnolol: Application of the RAF approach to decipher the contributions of multiple UGT isoforms.Drug Metab Dispos. 2012; 40: 529-538Crossref PubMed Scopus (61) Google Scholar7.Shiraga T. Yajima K. Suzuki K. Suzuki K. Hashimoto T. Iwatsubo T. Miyashita A. Usui T. Identification of UDP-glucuronosyltransferases responsible for the glucuronidation of darexaban, an oral factor Xa inhibitor, in human liver and intestine.Drug Metab Dispos. 2012; 40: 276-282Crossref PubMed Scopus (25) Google Scholar In addition, the UGT1A10 polymorphisms (e.g., E129K) with altered enzyme activity have been identified; and they may be an important determinant in risk for various cancers as well as in intersubject variability for pharmacokinetics.8.Dellinger R.W. Fang J.L. Chen G. Weinberg R. Lazarus P. Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: Decreased glucuronidative activity of the UGT1A10139Lys isoform.Drug Metab Dispos. 2006; 34: 943-949PubMed Google Scholar9.Dellinger R.W. Chen G. Blevins-Primeau A.S. Krzeminski J. Amin S. Lazarus P. Glucuronidation of PhIP and N-OH-PhIP by UDP-glucuronosyltransferase 1A10.Carcinogenesis. 2007; 28: 2412-2418Crossref PubMed Scopus (49) Google ScholarLike other UGT isoforms (e.g., UGT1A1, UGT1A4, and UGT1A9),10.Sorich M.J. Smith P.A. McKinnon R.A. Miners J.O. Pharmacophore and quantitative structure activity relationship modelling of UDP-glucuronosyltransferase 1A1 (UGT1A1) substrates.Pharmacogenetics. 2002; 12: 635-645Crossref PubMed Scopus (69) Google Scholar, 11.Smith P.A. Sorich M.J. McKinnon R.A. Miners J.O. Pharmacophore and quantitative structure–activity relationship modeling: Complementary approaches for the rationalization and prediction of UDP-glucuronosyltransferase 1A4 substrate selectivity.J Med Chem. 2003; 46: 1617-1626Crossref PubMed Scopus (72) Google Scholar, 12.Smith P.A. Sorich M.J. Low L.S. McKinnon R.A. Miners J.O. Towards integrated ADME prediction: Past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases.J Mol Graph Model. 2004; 22: 507-517Crossref PubMed Scopus (60) Google Scholar UGT1A10 demonstrates broad substrate selectivity. The substrates of UGT1A10 include simple phenols, nitrosamines, flavonoids, estrogens, and polycyclic aromatic hydrocarbons.9.Dellinger R.W. Chen G. Blevins-Primeau A.S. Krzeminski J. Amin S. Lazarus P. Glucuronidation of PhIP and N-OH-PhIP by UDP-glucuronosyltransferase 1A10.Carcinogenesis. 2007; 28: 2412-2418Crossref PubMed Scopus (49) Google Scholar,13.Balliet R.M. Chen G. Dellinger R.W. Lazarus P. UDP-glucuronosyltransferase 1A10: Activity against the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol, and a potential role for a novel UGT1A10 promoter deletion polymorphism in cancer susceptibility.Drug Metab Dispos. 2010; 38: 484-490Crossref PubMed Scopus (21) Google Scholar, 14.Xiong Y. Bernardi D. Bratton S. Ward M.D. Battaglia E. Finel M. Drake R.R. Radominska-Pandya A. Phenylalanine 90 and 93 are localized within the phenol binding site of human UDP-glucuronosyltransferase 1A10 as determined by photoaffinity labeling, mass spectrometry, and site-directed mutagenesis.Biochemistry. 2006; 45: 2322-2332Crossref PubMed Scopus (36) Google Scholar, 15.Höglund C. Sneitz N. Radominska-Pandya A. Laakonen L. Finel M. Phenylalanine 93 of the human UGT1A10 plays a major role in the interactions of the enzyme with estrogens.Steroids. 2011; 76: 1465-1473Crossref PubMed Scopus (9) Google Scholar, 16.Lewinsky R.H. Smith P.A. Mackenzie P.I. Glucuronidation of bioflavonoids by human UGT1A10: Structure–function relationships.Xenobiotica. 2005; 35: 117-129Crossref PubMed Scopus (28) Google Scholar This promiscuity in substrate selection is advantageous for detoxification of chemicals, but it poses significant challenges in understanding the chemical features for UGT substrates. Nonetheless, Miners' group has successfully established substrate models for UGT1A1 and UGT1A4 using two-dimensional (2D)-/three-dimensional (3D)-quantitative structure–activity relationship (QSAR) techniques (including pharmacophore).10.Sorich M.J. Smith P.A. McKinnon R.A. Miners J.O. Pharmacophore and quantitative structure activity relationship modelling of UDP-glucuronosyltransferase 1A1 (UGT1A1) substrates.Pharmacogenetics. 2002; 12: 635-645Crossref PubMed Scopus (69) Google Scholar11.Smith P.A. Sorich M.J. McKinnon R.A. Miners J.O. Pharmacophore and quantitative structure–activity relationship modeling: Complementary approaches for the rationalization and prediction of UDP-glucuronosyltransferase 1A4 substrate selectivity.J Med Chem. 2003; 46: 1617-1626Crossref PubMed Scopus (72) Google Scholar Unexpectedly, attempts to modeling UGT1A9 substrates with the same methods by the same group of investigators were unsuccessful.12.Smith P.A. Sorich M.J. Low L.S. McKinnon R.A. Miners J.O. Towards integrated ADME prediction: Past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases.J Mol Graph Model. 2004; 22: 507-517Crossref PubMed Scopus (60) Google Scholar In a later study, UGT1A9 substrate models were constructed by applying comparative molecular field analysis (CoMFA) method.17.Wu B. Morrow J.K. Singh R. Zhang S. Hu M. Three-dimensional quantitative structure–activity relationship studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a pharmacophore-based comparative molecular field analysis model.J Pharmacol Exp Ther. 2011; 336: 403-413Crossref PubMed Scopus (33) Google Scholar Taken together, this indicates that modeling/predicting substrates for different UGT isoforms may require distinct algorithms. Here, we aim to elucidate the substrate selectivity of UGT1A10 using the VolSurf approach. VolSurf is a computational procedure to produce 2D molecular descriptors from 3D molecular interaction energy grid maps.18.Cruciani G. Crivori P. Carrupt P.-.A. Testa B. Molecular fields in quantitative structure-permeation relationships: The VolSurf approach.J Mol Struct: THEOCHEM. 2000; 503: 17-30Crossref Scopus (547) Google Scholar19.Cruciani G. Pastor M. Guba W. VolSurf: A new tool for the pharmacokinetic optimization of lead compounds.Eur J Pharm Sci Suppl. 2000; 2: S29-S39Crossref Scopus (394) Google Scholar The principal advantage of these descriptors is that they do not require structural superposition and mapping for a 3D-QSAR, as are required, respectively, in CoMFA and pharmacophore modeling (two other 3D-QSAR techniques, please refer to the literature for detailed introduction).20.Cramer R.D. Patterson D.E. Bunce J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins.J Am Chem Soc. 1988; 110: 5959-5967Crossref PubMed Scopus (4061) Google Scholar21.Langer T. Hoffmann R.D. Pharmacophores and pharmacophore searches. Wiley-VCH, Weinheim2006Crossref Scopus (9) Google ScholarMATERIALS AND METHODSData SetA data set (Km values) of 43 diverse UGT1A10 substrates, 32 of which were used as a training set and 11 of which were used as a test set, was collated from the literature (Table 1).Table 1Experimental and Calculated UGT1A10 Activities for the Training Set (No. 1–32) and Test Set (No. 33–43) compounds in this studyCompoundNameKm (mM)Log(1/Km) ExperimentalInitial Model Log(1/Km)aPredicted values from the initial UGT1A10 model.Refined Model Log(1/Km)bPredicted values from the refined UGT1A10 model.Reference1.3-Hydroxybenzo(a)pyrene0.0102.011.732.038.Dellinger R.W. Fang J.L. Chen G. Weinberg R. Lazarus P. Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: Decreased glucuronidative activity of the UGT1A10139Lys isoform.Drug Metab Dispos. 2006; 34: 943-949PubMed Google Scholar2.4-Methylumbelliferone0.1230.910.200.3114.Xiong Y. Bernardi D. Bratton S. Ward M.D. Battaglia E. Finel M. Drake R.R. Radominska-Pandya A. Phenylalanine 90 and 93 are localized within the phenol binding site of human UDP-glucuronosyltransferase 1A10 as determined by photoaffinity labeling, mass spectrometry, and site-directed mutagenesis.Biochemistry. 2006; 45: 2322-2332Crossref PubMed Scopus (36) Google Scholar3.4-Nitrophenol0.3870.410.140.1515.Höglund C. Sneitz N. Radominska-Pandya A. Laakonen L. Finel M. Phenylalanine 93 of the human UGT1A10 plays a major role in the interactions of the enzyme with estrogens.Steroids. 2011; 76: 1465-1473Crossref PubMed Scopus (9) Google Scholar4.4-Hydroxyindole3.624−0.560.340.2622.Manevski N. Kurkela M. Höglund C. Mauriala T. Court M.H. Yli-Kauhaluoma J. Finel M. Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases.Drug Metab Dispos. 2010; 38: 386-395Crossref PubMed Scopus (36) Google Scholar5.7-Hydroxybenzo(a)pyrene0.0102.011.711.948.Dellinger R.W. Fang J.L. Chen G. Weinberg R. Lazarus P. Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: Decreased glucuronidative activity of the UGT1A10139Lys isoform.Drug Metab Dispos. 2006; 34: 943-949PubMed Google Scholar6.7-Hydroxywarfarin0.1700.771.271.0623.Miller G.P. Lichti C.F. Zielinska A.K. Mazur A. Bratton S.M. Gallus-Zawada A. Finel M. Moran J.H. Radominska-Pandya A. Identification of hydroxywarfarin binding site in human UDP glucuronosyltransferase 1a10: Phenylalanine90 is crucial for the glucuronidation of 6- and 7-hydroxywarfarin but not 8-hydroxywarfarin.Drug Metab Dispos. 2008; 36: 2211-2218Crossref PubMed Scopus (11) Google Scholar7.Aldosterone0.3890.410.580.5124.Knights K.M. Winner L.K. Elliot D.J. Bowalgaha K. Miners J.O. Aldosterone glucuronidation by human liver and kidney microsomes and recombinant UDP-glucuronosyltransferases: Inhibition by NSAIDs.Br J Clin Pharmacol. 2009; 68: 402-412Crossref PubMed Scopus (50) Google Scholar8.Alizarin0.1250.901.000.9425.Cheng Z. Radominska-Pandya A. Tephly T.R. Studies on the substrate specificity of human intestinal UDP-lucuronosyltransferases 1A8 and 1A10.Drug Metab Dispos. 1999; 27: 1165-1170PubMed Google Scholar9.Apigenin0.0231.641.331.4625.Cheng Z. Radominska-Pandya A. Tephly T.R. Studies on the substrate specificity of human intestinal UDP-lucuronosyltransferases 1A8 and 1A10.Drug Metab Dispos. 1999; 27: 1165-1170PubMed Google Scholar10.Benzo(a)pyrene-trans-7,8-dihydrodiol0.0471.331.351.608.Dellinger R.W. Fang J.L. Chen G. Weinberg R. Lazarus P. Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: Decreased glucuronidative activity of the UGT1A10139Lys isoform.Drug Metab Dispos. 2006; 34: 943-949PubMed Google Scholar11.Cannabinol0.0591.231.741.4426.Mazur A. Lichti C.F. Prather P.L. Zielinska A.K. Bratton S.M. Gallus-Zawada A. Finel M. Miller G.P. Radomińska-Pandya A. Moran J.H. Characterization of human hepatic and extrahepatic UDP-glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids.Drug Metab Dispos. 2009; 37: 1496-1504Crossref PubMed Scopus (110) Google Scholar12.Dopamine2.190−0.34−0.13−0.1927.Itäaho K. Court M.H. Uutela P. Kostiainen R. Radominska-Pandya A. Finel M. Dopamine is a low-affinity and high-specificity substrate for the human UDP-glucuronosyltransferase 1A10.Drug Metab Dispos. 2009; 37: 768-775Crossref PubMed Scopus (45) Google Scholar13.Endoxifen0.0401.402.011.9328.Blevins-Primeau A.S. Sun D. Chen G. Sharma A.K. Gallagher C.J. Amin S. Lazarus P. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites.Cancer Res. 2009; 69: 1892-1900Crossref PubMed Scopus (68) Google Scholar14.Entacapone0.0291.541.641.7129.Luukkanen L. Taskinen J. Kurkela M. Kostiainen R. Hirvonen J. Finel M. Kinetic characterization of the 1A subfamily of recombinant human UDP-glucuronosyltransferases.Drug Metab Dispos. 2005; 33: 1017-1026Crossref PubMed Scopus (73) Google Scholar15.Ethinyl estradiol0.1230.911.281.0815.Höglund C. Sneitz N. Radominska-Pandya A. Laakonen L. Finel M. Phenylalanine 93 of the human UGT1A10 plays a major role in the interactions of the enzyme with estrogens.Steroids. 2011; 76: 1465-1473Crossref PubMed Scopus (9) Google Scholar16.Feruic acid2.490−0.400.030.0130.Li X. Shang L. Wu Y. Abbas S. Li D. Netter P. Ouzzine M. Wang H. Magdalou J. Identification of the human UDP-glucuronosyltransferase isoforms involved in the glucuronidation of the phytochemical ferulic acid.Drug Metab Pharmacokinet. 2011; 26: 341-350Crossref PubMed Scopus (16) Google Scholar17.Genistein0.0121.911.431.3131.Tang L. Singh R. Liu Z. Hu M. Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones.Mol Pharm. 2009; 6: 1466-1482Crossref PubMed Scopus (87) Google Scholar18.Hesperetin0.0301.521.281.0632.Brand W. Boersma M.G. Bik H. Hoek-van den Hil E.F. Vervoort J. Barron D. Meinl W. Glatt H. Williamson G. van Bladeren P.J. Rietjens I.M. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples.Drug Metab Dispos. 2010; 38: 617-625Crossref PubMed Scopus (85) Google Scholar19.Irilone0.0101.991.751.8933.Maul R. Siegl D. Kulling S.E. Glucuronidation of the red clover isoflavone irilone by liver microsomes from different species and human UDP-glucuronosyltransferases.Drug Metab Dispos. 2011; 39: 610-616Crossref PubMed Scopus (10) Google Scholar20.Isoliquiritigenin0.0261.591.451.4134.Guo J. Liu A. Cao H. Luo Y. Pezzuto J.M. van Breemen R.B. Biotransformation of the chemopreventive agent 2′,4′,4-trihydroxychalcone (isoliquiritigenin) by UDP-glucuronosyltransferases.Drug Metab Dispos. 2008; 36: 2104-2112Crossref PubMed Scopus (35) Google Scholar21.Jaceosidin0.0111.971.932.1335.Song W.Y. Ji H.Y. Baek N.I. Jeong T.S. Lee H.S. In vitro metabolism of jaceosidin and characterization of cytochrome P450 and UDP-glucuronosyltransferase enzymes in human liver microsomes.Arch Pharm Res. 2010; 33: 1985-1996Crossref PubMed Scopus (14) Google Scholar22.Magnolol0.0092.071.541.256.Zhu L. Ge G. Zhang H. Liu H. He G. Liang S. Zhang Y. Fang Z. Dong P. Finel M. Yang L. Characterization of hepatic and intestinal glucuronidation of magnolol: Application of the RAF approach to decipher the contributions of multiple UGT isoforms.Drug Metab Dispos. 2012; 40: 529-538Crossref PubMed Scopus (61) Google Scholar23.Nebicapone0.1050.981.071.0436.Loureiro A.I. Bonifácio M.J. Fernandes-Lopes C. Almeida L. Wright L.C. Soares-Da-Silva P. Human metabolism of nebicapone (BIA 3–202), a novel catechol-o-methyltransferase inhibitor: Characterization of in vitro glucuronidation.Drug Metab Dispos. 2006; 34: 1856-1862Crossref PubMed Scopus (21) Google Scholar24.OroxylinA0.0151.831.411.4737.Zhou Q. Zheng Z. Xia B. Tang L. Lv C. Liu W. Liu Z. Hu M. Use of isoform-specific UGT metabolism to determine and describe rates and profiles of glucuronidation of wogonin and oroxylin A by human liver and intestinal microsomes.Pharm Res. 2010; 27: 1568-1583Crossref PubMed Scopus (43) Google Scholar25.PhIP0.0621.201.271.459.Dellinger R.W. Chen G. Blevins-Primeau A.S. Krzeminski J. Amin S. Lazarus P. Glucuronidation of PhIP and N-OH-PhIP by UDP-glucuronosyltransferase 1A10.Carcinogenesis. 2007; 28: 2412-2418Crossref PubMed Scopus (49) Google Scholar26.Piceatannol0.0341.471.401.4138.Miksits M. Maier-Salamon A. Vo T.P. Sulyok M. Schuhmacher R. Szekeres T. Jäger W. Glucuronidation of piceatannol by human liver microsomes: Major role of UGT1A1, UGT1A8 and UGT1A10.J Pharm Pharmacol. 2010; 62: 47-54Crossref PubMed Scopus (25) Google Scholar27.Picroside II0.0451.351.241.4539.Li T. Zheng Y. Fu F. Ji H. Chen X. Zhao Y. Zhao D. Li N. Zhang L. Assessment of UDP-glucuronosyltransferase catalyzed formation of Picroside II glucuronide in microsomes of different species and recombinant UGTs.Xenobiotica. 2011; 41: 530-537Crossref PubMed Scopus (8) Google Scholar28.Raloxifene0.0052.322.262.2040.Temp D.C. Fan P.W. Stevens J.C. Characterization of raloxifene glucuronidation in vitro: Contribution of intestinal metabolism to presystemic clearance.Drug Metab Dispos. 2002; 30: 694-700Crossref PubMed Scopus (171) Google Scholar29.R-propranolol0.5000.300.830.6641.Sten T. Qvisen S. Uutela P. Luukkanen L. Kostiainen R. Finel M. Prominent but reverse stereoselectivity in propranolol glucuronidation by human UDP-glucuronosyltransferases 1A9 and 1A10.Drug Metab Dispos. 2006; 34: 1488-1494Crossref PubMed Scopus (46) Google Scholar30.Scopoletin0.5400.270.400.4925.Cheng Z. Radominska-Pandya A. Tephly T.R. Studies on the substrate specificity of human intestinal UDP-lucuronosyltransferases 1A8 and 1A10.Drug Metab Dispos. 1999; 27: 1165-1170PubMed Google Scholar31.Troglitazone0.0111.951.871.7842.Watanabe Y. Nakajima M. Yokoi T. Troglitazone glucuronidation in human liver and intestine microsomes: High catalytic activity of UGT1A8 and UGT1A10.Drug Metab Dispos. 2002; 30: 1462-1469Crossref PubMed Scopus (73) Google Scholar32.Valproic acid5.500−0.74−1.23−1.1043.Argikar U.A. Remmel R.P. Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10.Drug Metab Dispos. 2009; 37: 229-236Crossref PubMed Scopus (107) Google Scholar33.6-Hydroxywarfarin0.4800.321.221.0423.Miller G.P. Lichti C.F. Zielinska A.K. Mazur A. Bratton S.M. Gallus-Zawada A. Finel M. Moran J.H. Radominska-Pandya A. Identification of hydroxywarfarin binding site in human UDP glucuronosyltransferase 1a10: Phenylalanine90 is crucial for the glucuronidation of 6- and 7-hydroxywarfarin but not 8-hydroxywarfarin.Drug Metab Dispos. 2008; 36: 2211-2218Crossref PubMed Scopus (11) Google Scholar34.8-Hydroxywarfarin0.3900.411.200.9423.Miller G.P. Lichti C.F. Zielinska A.K. Mazur A. Bratton S.M. Gallus-Zawada A. Finel M. Moran J.H. Radominska-Pandya A. Identification of hydroxywarfarin binding site in human UDP glucuronosyltransferase 1a10: Phenylalanine90 is crucial for the glucuronidation of 6- and 7-hydroxywarfarin but not 8-hydroxywarfarin.Drug Metab Dispos. 2008; 36: 2211-2218Crossref PubMed Scopus (11) Google Scholar35.Estradiol0.0641.191.100.9144.Basu N.K. Kubota S. Meselhy M.R. Ciotti M. Chowdhury B. Hartori M. Owens I.S. Gastrointestinally distributed UDP-glucuronosyltransferase 1A10, which metabolizes estrogens and nonsteroidal anti-inflammatory drugs, depends upon phosphorylation.J Biol Chem. 2004; 279: 28320-28329Crossref PubMed Scopus (47) Google Scholar36.Eugenol0.0781.110.380.2625.Cheng Z. Radominska-Pandya A. Tephly T.R. Studies on the substrate specificity of human intestinal UDP-lucuronosyltransferases 1A8 and 1A10.Drug Metab Dispos. 1999; 27: 1165-1170PubMed Google Scholar37.Prunetin0.0042.371.501.5031.Tang L. Singh R. Liu Z. Hu M. Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones.Mol Pharm. 2009; 6: 1466-1482Crossref PubMed Scopus (87) Google Scholar38.4-Hydroxytamoxifen0.0961.022.152.0728.Blevins-Primeau A.S. Sun D. Chen G. Sharma A.K. Gallagher C.J. Amin S. Lazarus P. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites.Cancer Res. 2009; 69: 1892-1900Crossref PubMed Scopus (68) Google Scholar39.1-Hydroxypyrene0.0111.951.141.368.Dellinger R.W. Fang J.L. Chen G. Weinberg R. Lazarus P. Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: Decreased glucuronidative activity of the UGT1A10139Lys isoform.Drug Metab Dispos. 2006; 34: 943-949PubMed Google Scholar40.Cis-resveratrol0.2500.601.121.0145.Iwuchukwu O.F. Nagar S. Cis-resveratrol glucuronidation kinetics in human and recombinant UGT1A sources.Xenobiotica. 2010; 40: 102-108Crossref PubMed Scopus (10) Google Scholar41.N-hydroxy PhIP0.0761.121.231.439.Dellinger R.W. Chen G. Blevins-Primeau A.S. Krzeminski J. Amin S. Lazarus P. Glucuronidation of PhIP and N-OH-PhIP by UDP-glucuronosyltransferase 1A10.Carcinogenesis. 2007; 28: 2412-2418Crossref PubMed Scopus (49) Google Scholar42.Psilocin3.851−0.590.380.3022.Manevski N. Kurkela M. Höglund C. Mauriala T. Court M.H. Yli-Kauhaluoma J. Finel M. Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases.Drug Metab Dispos. 2010; 38: 386-395Crossref PubMed Scopus (36) Google Scholar43.9-Hydroxybenzo(a)pyrene0.0381.421.711.998.Dellinger R.W. Fang J.L. Chen G. Weinberg R. Lazarus P. Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: Decreased glucuronidative activity of the UGT1A10139Lys isoform.Drug Metab Dispos. 2006; 34: 943-949PubMed Google ScholarPlease see Figures 1 and 3 for correlation plots of experimental versus calculated values.a Predicted values from the initial UGT1A10 model.b Predicted values from the refined UGT1A10 model. Open table in a new tab Km value is the Michaelis constant derived from experimental kinetic profiling using recombinant UGT1A10. All enzyme assays were performed without addition of albumen (bovine serum albumin or human serum albumin), which has been shown to alter Km value of glucuronidation mediated by UGT isoforms such as UGT1A9.46.Rowland A. Knights K.M. Mackenzie P.I. Miners J.O. The “albumin effect” and drug glucuronidation: Bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities.Drug Metab Dispos. 2008; 36: 1056-1062Crossref PubMed Scopus (139) Google Scholar The training set was used for model building, and the test set was used for an external validation of the model. The 3D structures for all substrates were prepared using SYBYL 8.0 (Tripos, St. Louis, Missouri). Amine (primary, secondary, and tertiary) groups were protonated. Carboxylate groups were considered to be deprotonated. Partial atomic charges were determined using Gasteiger–Marsili method. Energy minimizations were performed using the Tripos force field with a distance-dependent dielectric and a conjugate gradient method (convergence criterion 0.01 kcal/mol).Calculation of VolSurf Descriptors and Statistical AnalysisA set of 94 Volsurf descriptors were generated from 3D molecular fields by using the Volsurf program contained in SYBYL 8.0 (Tripos). Detailed definitions of these descriptors are provided in the literature.18.Cruciani G. Crivori P. Carrupt P.-.A. Testa B. Molecular fields in quantitative structure-permeation relationships: The VolSurf approach.J Mol Struct: THEOCHEM. 2000; 503: 17-30Crossref Scopus (547) Google Scholar47.Crivori P. Cruciani G. Carrupt P.A. Testa B. Predicting blood–brain barrier permeation from three-dimensional molecular structure.J Med Chem. 2000; 43: 2204-2216Crossref PubMed Scopus (433) Google Scholar The water probe (OH2) was used to simulate solvation–desolvation processes, whereas the hydrophobic probe (DRY) and the carbonyl probe (O) were used to simulate drug–membrane interactions.47.Crivori P. Cruciani G. Carrupt P.A. Testa B. Predicting blood–brain barrier permeation from three-dimensional molecular structure.J Med Chem. 2000; 43: 2204-2216Crossref PubMed Scopus (433) Google Scholar The DRY probe is a specific probe for the computation of the hydrophobic energy; the overall energy of the hydrophobic probe, R, is computed at each grid point as Eentropy + ELJ–EHB, where Eentropy is the ideal entropic component of the hydrophobic effect in an aqueous environment, ELJ measures the induction and dispersion interactions occurring between any pair of molecules, and EHB measures the H-bonding interactions between water molecules and polar groups on the target surface.Partial least square (PLS) analyses were implemented in the Volsurf program. To check the statistical significance of the model, cross-validations were performed by means of the “leave-one-out” procedure. The optimal number of components [or principal components (PCs)] was determined by selecting the highest q2 value. The q2 (cross-validated r2) and r2 (noncross-validated r2) were computed as defined in VolSurf program. The fractional factorial design (FFD) procedure was used to select the variables, which have the largest effect on predictability.R" @default.
- W2091839997 created "2016-06-24" @default.
- W2091839997 creator A5000548162 @default.
- W2091839997 creator A5040226048 @default.
- W2091839997 date "2012-09-01" @default.
- W2091839997 modified "2023-10-17" @default.
- W2091839997 title "In Silico Modeling of UDP-Glucuronosyltransferase 1A10 Substrates Using the Volsurf Approach" @default.
- W2091839997 cites W1966441555 @default.
- W2091839997 cites W1967263535 @default.
- W2091839997 cites W1971932031 @default.
- W2091839997 cites W1986699902 @default.
- W2091839997 cites W1989874437 @default.
- W2091839997 cites W1992229282 @default.
- W2091839997 cites W1992469600 @default.
- W2091839997 cites W1996813528 @default.
- W2091839997 cites W2010757320 @default.
- W2091839997 cites W2012075352 @default.
- W2091839997 cites W2017898027 @default.
- W2091839997 cites W2018530877 @default.
- W2091839997 cites W2020113500 @default.
- W2091839997 cites W2020286598 @default.
- W2091839997 cites W2022289628 @default.
- W2091839997 cites W2023505864 @default.
- W2091839997 cites W2029886788 @default.
- W2091839997 cites W2051884071 @default.
- W2091839997 cites W2053186448 @default.
- W2091839997 cites W2060324598 @default.
- W2091839997 cites W2063060349 @default.
- W2091839997 cites W2065457701 @default.
- W2091839997 cites W2089790278 @default.
- W2091839997 cites W2091758060 @default.
- W2091839997 cites W2092532029 @default.
- W2091839997 cites W2098149591 @default.
- W2091839997 cites W2099617203 @default.
- W2091839997 cites W2100086280 @default.
- W2091839997 cites W2104334080 @default.
- W2091839997 cites W2105026769 @default.
- W2091839997 cites W2118341181 @default.
- W2091839997 cites W2120924809 @default.
- W2091839997 cites W2125829771 @default.
- W2091839997 cites W2126735093 @default.
- W2091839997 cites W2129577292 @default.
- W2091839997 cites W2132624405 @default.
- W2091839997 cites W2133970542 @default.
- W2091839997 cites W2139034558 @default.
- W2091839997 cites W2139176247 @default.
- W2091839997 cites W2148116148 @default.
- W2091839997 cites W2153828846 @default.
- W2091839997 cites W2159914374 @default.
- W2091839997 cites W2164393399 @default.
- W2091839997 cites W2166297054 @default.
- W2091839997 cites W2170680841 @default.
- W2091839997 doi "https://doi.org/10.1002/jps.23100" @default.
- W2091839997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22388963" @default.
- W2091839997 hasPublicationYear "2012" @default.
- W2091839997 type Work @default.
- W2091839997 sameAs 2091839997 @default.
- W2091839997 citedByCount "12" @default.
- W2091839997 countsByYear W20918399972012 @default.
- W2091839997 countsByYear W20918399972013 @default.
- W2091839997 countsByYear W20918399972014 @default.
- W2091839997 countsByYear W20918399972015 @default.
- W2091839997 countsByYear W20918399972017 @default.
- W2091839997 countsByYear W20918399972019 @default.
- W2091839997 countsByYear W20918399972020 @default.
- W2091839997 countsByYear W20918399972021 @default.
- W2091839997 crossrefType "journal-article" @default.
- W2091839997 hasAuthorship W2091839997A5000548162 @default.
- W2091839997 hasAuthorship W2091839997A5040226048 @default.
- W2091839997 hasConcept C104317684 @default.
- W2091839997 hasConcept C185592680 @default.
- W2091839997 hasConcept C2775905019 @default.
- W2091839997 hasConcept C55493867 @default.
- W2091839997 hasConceptScore W2091839997C104317684 @default.
- W2091839997 hasConceptScore W2091839997C185592680 @default.
- W2091839997 hasConceptScore W2091839997C2775905019 @default.
- W2091839997 hasConceptScore W2091839997C55493867 @default.
- W2091839997 hasIssue "9" @default.
- W2091839997 hasLocation W20918399971 @default.
- W2091839997 hasLocation W20918399972 @default.
- W2091839997 hasOpenAccess W2091839997 @default.
- W2091839997 hasPrimaryLocation W20918399971 @default.
- W2091839997 hasRelatedWork W1531601525 @default.
- W2091839997 hasRelatedWork W2319480705 @default.
- W2091839997 hasRelatedWork W2384464875 @default.
- W2091839997 hasRelatedWork W2606230654 @default.
- W2091839997 hasRelatedWork W2607424097 @default.
- W2091839997 hasRelatedWork W2748952813 @default.
- W2091839997 hasRelatedWork W2899084033 @default.
- W2091839997 hasRelatedWork W2948807893 @default.
- W2091839997 hasRelatedWork W4301395162 @default.
- W2091839997 hasRelatedWork W2778153218 @default.
- W2091839997 hasVolume "101" @default.
- W2091839997 isParatext "false" @default.
- W2091839997 isRetracted "false" @default.
- W2091839997 magId "2091839997" @default.
- W2091839997 workType "article" @default.