Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091875737> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2091875737 endingPage "350" @default.
- W2091875737 startingPage "345" @default.
- W2091875737 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper O> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal O</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an order of an algebraic number field. It was shown by Ge that given a factorization of an <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper O> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal O</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ideal <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German a> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>a</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {a}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into a product of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper O> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal O</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ideals it is possible to compute in polynomial time an overorder <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper O prime> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>mathcal O’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper O> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal O</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a <italic>gcd-free</italic> refinement of the input factorization; i.e., a factorization of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=German a script upper O prime> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=fraktur>a</mml:mi> </mml:mrow> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>mathfrak {a}mathcal O’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into a power product of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper O prime> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>mathcal O’</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-ideals such that the bases of that power product are all invertible and pairwise coprime and the extensions of the factors of the input factorization are products of the bases of the output factorization. In this paper we prove that the order <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper O prime> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>mathcal O’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the smallest overorder of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper O> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>O</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal O</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in which such a gcd-free refinement of the input factorization exists. We also introduce a partial ordering on the gcd-free factorizations and prove that the factorization which is computed by Ge’s algorithm is the smallest gcd-free refinement of the input factorization with respect to this partial ordering." @default.
- W2091875737 created "2016-06-24" @default.
- W2091875737 creator A5000598657 @default.
- W2091875737 creator A5058021952 @default.
- W2091875737 date "1999-01-01" @default.
- W2091875737 modified "2023-10-17" @default.
- W2091875737 title "On factor refinement in number fields" @default.
- W2091875737 cites W1977949908 @default.
- W2091875737 cites W2317183192 @default.
- W2091875737 cites W2914507133 @default.
- W2091875737 doi "https://doi.org/10.1090/s0025-5718-99-01023-6" @default.
- W2091875737 hasPublicationYear "1999" @default.
- W2091875737 type Work @default.
- W2091875737 sameAs 2091875737 @default.
- W2091875737 citedByCount "3" @default.
- W2091875737 countsByYear W20918757372023 @default.
- W2091875737 crossrefType "journal-article" @default.
- W2091875737 hasAuthorship W2091875737A5000598657 @default.
- W2091875737 hasAuthorship W2091875737A5058021952 @default.
- W2091875737 hasBestOaLocation W20918757371 @default.
- W2091875737 hasConcept C11413529 @default.
- W2091875737 hasConcept C154945302 @default.
- W2091875737 hasConcept C2776321320 @default.
- W2091875737 hasConcept C33923547 @default.
- W2091875737 hasConcept C41008148 @default.
- W2091875737 hasConceptScore W2091875737C11413529 @default.
- W2091875737 hasConceptScore W2091875737C154945302 @default.
- W2091875737 hasConceptScore W2091875737C2776321320 @default.
- W2091875737 hasConceptScore W2091875737C33923547 @default.
- W2091875737 hasConceptScore W2091875737C41008148 @default.
- W2091875737 hasIssue "225" @default.
- W2091875737 hasLocation W20918757371 @default.
- W2091875737 hasLocation W20918757372 @default.
- W2091875737 hasOpenAccess W2091875737 @default.
- W2091875737 hasPrimaryLocation W20918757371 @default.
- W2091875737 hasRelatedWork W151193258 @default.
- W2091875737 hasRelatedWork W1529400504 @default.
- W2091875737 hasRelatedWork W1871911958 @default.
- W2091875737 hasRelatedWork W1892467659 @default.
- W2091875737 hasRelatedWork W2348710178 @default.
- W2091875737 hasRelatedWork W2808586768 @default.
- W2091875737 hasRelatedWork W2998403542 @default.
- W2091875737 hasRelatedWork W3201926073 @default.
- W2091875737 hasRelatedWork W38394648 @default.
- W2091875737 hasRelatedWork W73525116 @default.
- W2091875737 hasVolume "68" @default.
- W2091875737 isParatext "false" @default.
- W2091875737 isRetracted "false" @default.
- W2091875737 magId "2091875737" @default.
- W2091875737 workType "article" @default.