Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091894170> ?p ?o ?g. }
- W2091894170 endingPage "7973" @default.
- W2091894170 startingPage "7962" @default.
- W2091894170 abstract "The volume of water in lakes is commonly estimated by combining data of water level variations with accurate bathymetry and shore topographic maps. However, bathymetry and shore topography data are often difficult to acquire, due to high costs for labour and equipment. This article presents an innovative method for calculating lake water volumes by using long-term time series remote-sensing data. Multi-spectral satellite remote-sensing images were used to map a lake’s water surface area. The lake water surface boundaries for each year were combined with field-observed water levels to generate a description of the underwater terrain. The lake water volume was then calculated from the water surface area and the underwater terrain data using a constructed TIN (triangulated irregular network) volume model. Lake Baiyangdian, the largest shallow freshwater lake in the North China Plain, was chosen as the case study area. For the last 40 years the water levels of Lake Baiyangdian have reflected multiple dry and wet periods, which provide a good data series for the study of the proposed method. Archived Landsat MSS/TM/ETM+ and HJ-1A/B images from 1973 to 2011 were used as the basic data. The NDWI (normalized difference water index) and MNDWI (modified NDWI) were used to map the water surface of the lake, and the lake water volumes were calculated with the 3D Analyst tool of ArcMap 9.3. The results show that the estimated water volumes from remote-sensing images were very consistent with the volumes derived from the fitted equation of the lake storage capacity curve based on observed data." @default.
- W2091894170 created "2016-06-24" @default.
- W2091894170 creator A5010666672 @default.
- W2091894170 creator A5023849125 @default.
- W2091894170 creator A5032210599 @default.
- W2091894170 creator A5032710652 @default.
- W2091894170 creator A5069636465 @default.
- W2091894170 date "2013-09-02" @default.
- W2091894170 modified "2023-10-05" @default.
- W2091894170 title "Lake water volume calculation with time series remote-sensing images" @default.
- W2091894170 cites W1522568816 @default.
- W2091894170 cites W1601010260 @default.
- W2091894170 cites W1969333417 @default.
- W2091894170 cites W1976946189 @default.
- W2091894170 cites W1984090615 @default.
- W2091894170 cites W1984167176 @default.
- W2091894170 cites W1990059352 @default.
- W2091894170 cites W1998028717 @default.
- W2091894170 cites W1998627176 @default.
- W2091894170 cites W2008586110 @default.
- W2091894170 cites W2009952589 @default.
- W2091894170 cites W2011287653 @default.
- W2091894170 cites W2014685194 @default.
- W2091894170 cites W2026651618 @default.
- W2091894170 cites W2039165290 @default.
- W2091894170 cites W2041797006 @default.
- W2091894170 cites W2045245368 @default.
- W2091894170 cites W2046404534 @default.
- W2091894170 cites W2052003377 @default.
- W2091894170 cites W2058723831 @default.
- W2091894170 cites W2061718511 @default.
- W2091894170 cites W2064131141 @default.
- W2091894170 cites W2068913130 @default.
- W2091894170 cites W2077509829 @default.
- W2091894170 cites W2077811318 @default.
- W2091894170 cites W2080138357 @default.
- W2091894170 cites W2085539475 @default.
- W2091894170 cites W2089082041 @default.
- W2091894170 cites W2090568582 @default.
- W2091894170 cites W2101678239 @default.
- W2091894170 cites W2146678023 @default.
- W2091894170 cites W2173197864 @default.
- W2091894170 doi "https://doi.org/10.1080/01431161.2013.827814" @default.
- W2091894170 hasPublicationYear "2013" @default.
- W2091894170 type Work @default.
- W2091894170 sameAs 2091894170 @default.
- W2091894170 citedByCount "61" @default.
- W2091894170 countsByYear W20918941702014 @default.
- W2091894170 countsByYear W20918941702015 @default.
- W2091894170 countsByYear W20918941702016 @default.
- W2091894170 countsByYear W20918941702017 @default.
- W2091894170 countsByYear W20918941702018 @default.
- W2091894170 countsByYear W20918941702019 @default.
- W2091894170 countsByYear W20918941702020 @default.
- W2091894170 countsByYear W20918941702021 @default.
- W2091894170 countsByYear W20918941702022 @default.
- W2091894170 countsByYear W20918941702023 @default.
- W2091894170 crossrefType "journal-article" @default.
- W2091894170 hasAuthorship W2091894170A5010666672 @default.
- W2091894170 hasAuthorship W2091894170A5023849125 @default.
- W2091894170 hasAuthorship W2091894170A5032210599 @default.
- W2091894170 hasAuthorship W2091894170A5032710652 @default.
- W2091894170 hasAuthorship W2091894170A5069636465 @default.
- W2091894170 hasConcept C111368507 @default.
- W2091894170 hasConcept C121332964 @default.
- W2091894170 hasConcept C127313418 @default.
- W2091894170 hasConcept C131509275 @default.
- W2091894170 hasConcept C143724316 @default.
- W2091894170 hasConcept C151730666 @default.
- W2091894170 hasConcept C152382732 @default.
- W2091894170 hasConcept C161840515 @default.
- W2091894170 hasConcept C174943157 @default.
- W2091894170 hasConcept C181843262 @default.
- W2091894170 hasConcept C187320778 @default.
- W2091894170 hasConcept C20556612 @default.
- W2091894170 hasConcept C205649164 @default.
- W2091894170 hasConcept C39432304 @default.
- W2091894170 hasConcept C58640448 @default.
- W2091894170 hasConcept C62520636 @default.
- W2091894170 hasConcept C62649853 @default.
- W2091894170 hasConcept C76886044 @default.
- W2091894170 hasConcept C8625798 @default.
- W2091894170 hasConcept C87717796 @default.
- W2091894170 hasConcept C98083399 @default.
- W2091894170 hasConceptScore W2091894170C111368507 @default.
- W2091894170 hasConceptScore W2091894170C121332964 @default.
- W2091894170 hasConceptScore W2091894170C127313418 @default.
- W2091894170 hasConceptScore W2091894170C131509275 @default.
- W2091894170 hasConceptScore W2091894170C143724316 @default.
- W2091894170 hasConceptScore W2091894170C151730666 @default.
- W2091894170 hasConceptScore W2091894170C152382732 @default.
- W2091894170 hasConceptScore W2091894170C161840515 @default.
- W2091894170 hasConceptScore W2091894170C174943157 @default.
- W2091894170 hasConceptScore W2091894170C181843262 @default.
- W2091894170 hasConceptScore W2091894170C187320778 @default.
- W2091894170 hasConceptScore W2091894170C20556612 @default.
- W2091894170 hasConceptScore W2091894170C205649164 @default.
- W2091894170 hasConceptScore W2091894170C39432304 @default.