Matches in SemOpenAlex for { <https://semopenalex.org/work/W2091904501> ?p ?o ?g. }
- W2091904501 endingPage "890" @default.
- W2091904501 startingPage "879" @default.
- W2091904501 abstract "In novelty detection, support vector data description (SVDD) is a one‐class classification technique that constructs a boundary to differentiate novel from normal patterns. However, boundaries constructed by SVDD do not consider the density of the data. Data points located in low density regions are more likely to be novel patterns because they are remote from their neighbors. This study presents a density‐focused SVDD (DFSVDD), for which its boundary considers both shape and the dense region of the data. Two distance measures, the kernel distance and the density distance, are combined to construct the DFSVDD boundary. The kernel distance can be obtained by solving a quadratic optimization, while support vectors are used to obtain the density distance. A simulation study was conducted to evaluate the performance of the proposed DFSVDD and was then compared with the traditional SVDD. The proposed method performed better than SVDD in terms of the area under the receiver operating characteristic curve. Copyright © 2014 John Wiley & Sons, Ltd." @default.
- W2091904501 created "2016-06-24" @default.
- W2091904501 creator A5058258354 @default.
- W2091904501 creator A5075561463 @default.
- W2091904501 creator A5080326276 @default.
- W2091904501 date "2014-07-12" @default.
- W2091904501 modified "2023-09-26" @default.
- W2091904501 title "A Density-focused Support Vector Data Description Method" @default.
- W2091904501 cites W154374743 @default.
- W2091904501 cites W1602011302 @default.
- W2091904501 cites W1823976324 @default.
- W2091904501 cites W1968114652 @default.
- W2091904501 cites W1970088130 @default.
- W2091904501 cites W1981966284 @default.
- W2091904501 cites W1989485111 @default.
- W2091904501 cites W1995042400 @default.
- W2091904501 cites W2020122551 @default.
- W2091904501 cites W2033795396 @default.
- W2091904501 cites W2037580552 @default.
- W2091904501 cites W2087216833 @default.
- W2091904501 cites W2095345875 @default.
- W2091904501 cites W2100294832 @default.
- W2091904501 cites W2103914106 @default.
- W2091904501 cites W2107373450 @default.
- W2091904501 cites W2112323714 @default.
- W2091904501 cites W2117897510 @default.
- W2091904501 cites W2118020555 @default.
- W2091904501 cites W2133396101 @default.
- W2091904501 cites W2134641333 @default.
- W2091904501 cites W2155653793 @default.
- W2091904501 cites W2157175419 @default.
- W2091904501 cites W3106889297 @default.
- W2091904501 cites W4212863985 @default.
- W2091904501 cites W4236998407 @default.
- W2091904501 cites W4299677235 @default.
- W2091904501 doi "https://doi.org/10.1002/qre.1688" @default.
- W2091904501 hasPublicationYear "2014" @default.
- W2091904501 type Work @default.
- W2091904501 sameAs 2091904501 @default.
- W2091904501 citedByCount "11" @default.
- W2091904501 countsByYear W20919045012015 @default.
- W2091904501 countsByYear W20919045012016 @default.
- W2091904501 countsByYear W20919045012017 @default.
- W2091904501 countsByYear W20919045012018 @default.
- W2091904501 countsByYear W20919045012019 @default.
- W2091904501 countsByYear W20919045012021 @default.
- W2091904501 countsByYear W20919045012022 @default.
- W2091904501 countsByYear W20919045012023 @default.
- W2091904501 crossrefType "journal-article" @default.
- W2091904501 hasAuthorship W2091904501A5058258354 @default.
- W2091904501 hasAuthorship W2091904501A5075561463 @default.
- W2091904501 hasAuthorship W2091904501A5080326276 @default.
- W2091904501 hasConcept C105795698 @default.
- W2091904501 hasConcept C114614502 @default.
- W2091904501 hasConcept C122280245 @default.
- W2091904501 hasConcept C12267149 @default.
- W2091904501 hasConcept C124101348 @default.
- W2091904501 hasConcept C134306372 @default.
- W2091904501 hasConcept C138885662 @default.
- W2091904501 hasConcept C153180895 @default.
- W2091904501 hasConcept C154945302 @default.
- W2091904501 hasConcept C185429906 @default.
- W2091904501 hasConcept C27206212 @default.
- W2091904501 hasConcept C2778738651 @default.
- W2091904501 hasConcept C2778924833 @default.
- W2091904501 hasConcept C33923547 @default.
- W2091904501 hasConcept C41008148 @default.
- W2091904501 hasConcept C42023084 @default.
- W2091904501 hasConcept C62354387 @default.
- W2091904501 hasConcept C71134354 @default.
- W2091904501 hasConcept C74193536 @default.
- W2091904501 hasConceptScore W2091904501C105795698 @default.
- W2091904501 hasConceptScore W2091904501C114614502 @default.
- W2091904501 hasConceptScore W2091904501C122280245 @default.
- W2091904501 hasConceptScore W2091904501C12267149 @default.
- W2091904501 hasConceptScore W2091904501C124101348 @default.
- W2091904501 hasConceptScore W2091904501C134306372 @default.
- W2091904501 hasConceptScore W2091904501C138885662 @default.
- W2091904501 hasConceptScore W2091904501C153180895 @default.
- W2091904501 hasConceptScore W2091904501C154945302 @default.
- W2091904501 hasConceptScore W2091904501C185429906 @default.
- W2091904501 hasConceptScore W2091904501C27206212 @default.
- W2091904501 hasConceptScore W2091904501C2778738651 @default.
- W2091904501 hasConceptScore W2091904501C2778924833 @default.
- W2091904501 hasConceptScore W2091904501C33923547 @default.
- W2091904501 hasConceptScore W2091904501C41008148 @default.
- W2091904501 hasConceptScore W2091904501C42023084 @default.
- W2091904501 hasConceptScore W2091904501C62354387 @default.
- W2091904501 hasConceptScore W2091904501C71134354 @default.
- W2091904501 hasConceptScore W2091904501C74193536 @default.
- W2091904501 hasFunder F4320322120 @default.
- W2091904501 hasIssue "6" @default.
- W2091904501 hasLocation W20919045011 @default.
- W2091904501 hasOpenAccess W2091904501 @default.
- W2091904501 hasPrimaryLocation W20919045011 @default.
- W2091904501 hasRelatedWork W2097028249 @default.
- W2091904501 hasRelatedWork W2108482774 @default.
- W2091904501 hasRelatedWork W2110459882 @default.