Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092005221> ?p ?o ?g. }
- W2092005221 abstract "Presented in this paper is an investigation of the use of ensemble methods in machine learning for developing function approximation models of the analytical objective function, to be applied to an optimization search process of a 6 DOF parallel manipulator. The process of optimization of these mechanisms can be cumbersome, as it often involves complex objective functions and diverse design parameters. The use of ensemble methods in machine learning methods combination is demonstrated and evaluated against the individual or base methods using dataset from a parallel robotic manipulator. Experiments are carried out to determine whether an ensemble performs better than the base methods." @default.
- W2092005221 created "2016-06-24" @default.
- W2092005221 creator A5006291980 @default.
- W2092005221 creator A5049730269 @default.
- W2092005221 creator A5073968263 @default.
- W2092005221 date "2013-10-01" @default.
- W2092005221 modified "2023-09-27" @default.
- W2092005221 title "Application of ensemble learning approach in function approximation for dimensional synthesis of a 6 DOF parallel manipulator" @default.
- W2092005221 cites W1590411969 @default.
- W2092005221 cites W1954244399 @default.
- W2092005221 cites W1964074981 @default.
- W2092005221 cites W1978371933 @default.
- W2092005221 cites W1982404080 @default.
- W2092005221 cites W1986689081 @default.
- W2092005221 cites W1993896896 @default.
- W2092005221 cites W1995953281 @default.
- W2092005221 cites W2002367982 @default.
- W2092005221 cites W2012062944 @default.
- W2092005221 cites W2029456162 @default.
- W2092005221 cites W2035274310 @default.
- W2092005221 cites W2036753645 @default.
- W2092005221 cites W2054658115 @default.
- W2092005221 cites W2066258520 @default.
- W2092005221 cites W2074162033 @default.
- W2092005221 cites W2084121184 @default.
- W2092005221 cites W2088507484 @default.
- W2092005221 cites W2107847614 @default.
- W2092005221 cites W2118716737 @default.
- W2092005221 cites W2121876188 @default.
- W2092005221 cites W2122111042 @default.
- W2092005221 cites W2123504579 @default.
- W2092005221 cites W2131812802 @default.
- W2092005221 cites W2133772980 @default.
- W2092005221 cites W2134893537 @default.
- W2092005221 cites W2139221609 @default.
- W2092005221 cites W2153448485 @default.
- W2092005221 cites W2154642048 @default.
- W2092005221 cites W2157374972 @default.
- W2092005221 cites W2160604967 @default.
- W2092005221 cites W2162798601 @default.
- W2092005221 cites W2171354924 @default.
- W2092005221 cites W1489489715 @default.
- W2092005221 doi "https://doi.org/10.1109/robomech.2013.6685487" @default.
- W2092005221 hasPublicationYear "2013" @default.
- W2092005221 type Work @default.
- W2092005221 sameAs 2092005221 @default.
- W2092005221 citedByCount "1" @default.
- W2092005221 countsByYear W20920052212020 @default.
- W2092005221 crossrefType "proceedings-article" @default.
- W2092005221 hasAuthorship W2092005221A5006291980 @default.
- W2092005221 hasAuthorship W2092005221A5049730269 @default.
- W2092005221 hasAuthorship W2092005221A5073968263 @default.
- W2092005221 hasConcept C111919701 @default.
- W2092005221 hasConcept C11413529 @default.
- W2092005221 hasConcept C119857082 @default.
- W2092005221 hasConcept C126255220 @default.
- W2092005221 hasConcept C134306372 @default.
- W2092005221 hasConcept C138094506 @default.
- W2092005221 hasConcept C14036430 @default.
- W2092005221 hasConcept C154945302 @default.
- W2092005221 hasConcept C33923547 @default.
- W2092005221 hasConcept C41008148 @default.
- W2092005221 hasConcept C42058472 @default.
- W2092005221 hasConcept C45942800 @default.
- W2092005221 hasConcept C50644808 @default.
- W2092005221 hasConcept C78458016 @default.
- W2092005221 hasConcept C86803240 @default.
- W2092005221 hasConcept C90509273 @default.
- W2092005221 hasConcept C91873725 @default.
- W2092005221 hasConcept C98045186 @default.
- W2092005221 hasConceptScore W2092005221C111919701 @default.
- W2092005221 hasConceptScore W2092005221C11413529 @default.
- W2092005221 hasConceptScore W2092005221C119857082 @default.
- W2092005221 hasConceptScore W2092005221C126255220 @default.
- W2092005221 hasConceptScore W2092005221C134306372 @default.
- W2092005221 hasConceptScore W2092005221C138094506 @default.
- W2092005221 hasConceptScore W2092005221C14036430 @default.
- W2092005221 hasConceptScore W2092005221C154945302 @default.
- W2092005221 hasConceptScore W2092005221C33923547 @default.
- W2092005221 hasConceptScore W2092005221C41008148 @default.
- W2092005221 hasConceptScore W2092005221C42058472 @default.
- W2092005221 hasConceptScore W2092005221C45942800 @default.
- W2092005221 hasConceptScore W2092005221C50644808 @default.
- W2092005221 hasConceptScore W2092005221C78458016 @default.
- W2092005221 hasConceptScore W2092005221C86803240 @default.
- W2092005221 hasConceptScore W2092005221C90509273 @default.
- W2092005221 hasConceptScore W2092005221C91873725 @default.
- W2092005221 hasConceptScore W2092005221C98045186 @default.
- W2092005221 hasLocation W20920052211 @default.
- W2092005221 hasOpenAccess W2092005221 @default.
- W2092005221 hasPrimaryLocation W20920052211 @default.
- W2092005221 hasRelatedWork W1590411969 @default.
- W2092005221 hasRelatedWork W1970645574 @default.
- W2092005221 hasRelatedWork W2002367982 @default.
- W2092005221 hasRelatedWork W2005694774 @default.
- W2092005221 hasRelatedWork W2023419222 @default.
- W2092005221 hasRelatedWork W2028966947 @default.
- W2092005221 hasRelatedWork W2054430081 @default.
- W2092005221 hasRelatedWork W2056800856 @default.
- W2092005221 hasRelatedWork W2084972789 @default.