Matches in SemOpenAlex for { <https://semopenalex.org/work/W2092052016> ?p ?o ?g. }
- W2092052016 endingPage "721" @default.
- W2092052016 startingPage "693" @default.
- W2092052016 abstract "In this article, we introduce functional data analysis (FDA), a set of statistical tools developed to study information on curves or functions. We review fundamentals of the methodology along with previous applications in other business disciplines to highlight the potential of FDA to managerial science. We provide details of the three most commonly used FDA techniques, including functional principal component analysis, functional regression, and functional clustering, and demonstrate each by investigating measures of firm financial performance from a panel data set of the 1,000 largest U.S. firms by revenues from 1992 to 2008. We compare results obtained from FDA with hierarchical linear modeling and conclude by outlining ideas for future micro- and macro-level organizational research incorporating this methodology." @default.
- W2092052016 created "2016-06-24" @default.
- W2092052016 creator A5043218860 @default.
- W2092052016 creator A5090163043 @default.
- W2092052016 date "2012-09-21" @default.
- W2092052016 modified "2023-10-18" @default.
- W2092052016 title "Introducing Functional Data Analysis to Managerial Science" @default.
- W2092052016 cites W1587682423 @default.
- W2092052016 cites W1603304768 @default.
- W2092052016 cites W1677595927 @default.
- W2092052016 cites W1974451892 @default.
- W2092052016 cites W1981015491 @default.
- W2092052016 cites W1988519609 @default.
- W2092052016 cites W1988997815 @default.
- W2092052016 cites W1998271713 @default.
- W2092052016 cites W2000303778 @default.
- W2092052016 cites W2010426780 @default.
- W2092052016 cites W2010657731 @default.
- W2092052016 cites W2013218072 @default.
- W2092052016 cites W2013998141 @default.
- W2092052016 cites W2020048384 @default.
- W2092052016 cites W2021435663 @default.
- W2092052016 cites W2031261250 @default.
- W2092052016 cites W2037106437 @default.
- W2092052016 cites W2056737608 @default.
- W2092052016 cites W2057932134 @default.
- W2092052016 cites W2058106374 @default.
- W2092052016 cites W2069888004 @default.
- W2092052016 cites W2071359961 @default.
- W2092052016 cites W2084382465 @default.
- W2092052016 cites W2090382476 @default.
- W2092052016 cites W2091083714 @default.
- W2092052016 cites W2098185428 @default.
- W2092052016 cites W2106096361 @default.
- W2092052016 cites W2115230672 @default.
- W2092052016 cites W2120045638 @default.
- W2092052016 cites W2125099865 @default.
- W2092052016 cites W2126074132 @default.
- W2092052016 cites W2134979710 @default.
- W2092052016 cites W2141226948 @default.
- W2092052016 cites W2144802862 @default.
- W2092052016 cites W2145126303 @default.
- W2092052016 cites W2147991432 @default.
- W2092052016 cites W2149447139 @default.
- W2092052016 cites W2149666129 @default.
- W2092052016 cites W2161278228 @default.
- W2092052016 cites W2164639462 @default.
- W2092052016 cites W2171104336 @default.
- W2092052016 cites W2475464593 @default.
- W2092052016 cites W3021203231 @default.
- W2092052016 cites W3104915946 @default.
- W2092052016 cites W3105733049 @default.
- W2092052016 cites W3124258528 @default.
- W2092052016 cites W3125845507 @default.
- W2092052016 cites W4205462863 @default.
- W2092052016 cites W4205685297 @default.
- W2092052016 cites W4256220928 @default.
- W2092052016 cites W4361743007 @default.
- W2092052016 doi "https://doi.org/10.1177/1094428112457830" @default.
- W2092052016 hasPublicationYear "2012" @default.
- W2092052016 type Work @default.
- W2092052016 sameAs 2092052016 @default.
- W2092052016 citedByCount "15" @default.
- W2092052016 countsByYear W20920520162013 @default.
- W2092052016 countsByYear W20920520162015 @default.
- W2092052016 countsByYear W20920520162016 @default.
- W2092052016 countsByYear W20920520162017 @default.
- W2092052016 countsByYear W20920520162019 @default.
- W2092052016 countsByYear W20920520162020 @default.
- W2092052016 countsByYear W20920520162021 @default.
- W2092052016 countsByYear W20920520162022 @default.
- W2092052016 countsByYear W20920520162023 @default.
- W2092052016 crossrefType "journal-article" @default.
- W2092052016 hasAuthorship W2092052016A5043218860 @default.
- W2092052016 hasAuthorship W2092052016A5090163043 @default.
- W2092052016 hasConcept C119857082 @default.
- W2092052016 hasConcept C124101348 @default.
- W2092052016 hasConcept C149782125 @default.
- W2092052016 hasConcept C154945302 @default.
- W2092052016 hasConcept C162324750 @default.
- W2092052016 hasConcept C177264268 @default.
- W2092052016 hasConcept C199360897 @default.
- W2092052016 hasConcept C2522767166 @default.
- W2092052016 hasConcept C27438332 @default.
- W2092052016 hasConcept C41008148 @default.
- W2092052016 hasConcept C51820054 @default.
- W2092052016 hasConcept C539667460 @default.
- W2092052016 hasConcept C56739046 @default.
- W2092052016 hasConcept C58489278 @default.
- W2092052016 hasConcept C71176878 @default.
- W2092052016 hasConcept C73555534 @default.
- W2092052016 hasConceptScore W2092052016C119857082 @default.
- W2092052016 hasConceptScore W2092052016C124101348 @default.
- W2092052016 hasConceptScore W2092052016C149782125 @default.
- W2092052016 hasConceptScore W2092052016C154945302 @default.
- W2092052016 hasConceptScore W2092052016C162324750 @default.
- W2092052016 hasConceptScore W2092052016C177264268 @default.
- W2092052016 hasConceptScore W2092052016C199360897 @default.